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www.jku.at

DVR 0093696

Approximate Geometric

Continuity for Numerical

Simulation and Surface

Reconstruction on Multi-

patch Domains

Doctoral Thesis

to obtain the academic degree of

Doktorin der Naturwissenschaften

in the Doctoral Program

Naturwissenschaften





Abstract

In the context of geometric modeling and isogeometric analysis, more complex

geometries are represented as multi-patch domains that consist of several tensor-

product spline patches. Naturally, smoothness across the patch interfaces is an

important issue, for the design both of the multi-patch surface itself as well as

for functions that are defined on the entire domain. This gives rise to different

coupling methods, some of which we study in this thesis.

Exact parametric smoothness is hard to achieve and in most cases requires

restrictive assumptions on the parameterization of the geometry. Moreover, in

real-world applications approximate smoothness often is sufficient. We consider

coupling approaches that work on general domains but only provide approximately

C1-smooth isogeometric functions or approximate G1-smoothness of a multi-patch

surface across patch interfaces.

There are two main possibilities how to encourage smoothness of an approxi-

mate solution to a partial differential equation on a multi-patch domain: Firstly,

one can make use of the fact that the given problem is fulfilled on all individual

patches. The patch-wise terms are summed up and different smoothness penalty

terms can be added. One instance of such a method is the discontinuous Galerkin

method, to which we devote the first part of this thesis. The discretized problem

contains integrals of test functions along the patch interfaces. Their evaluation

is crucial. Without matching interface parameterizations, two main difficulties

arise in this framework, which we tackle with reparameterizations and suitable

quadrature techniques.

Secondly, one can use globally smooth functions on the whole domain as test

functions in a continuous Galerkin scheme. Here, the essential part is the construc-

tion of such functions. In the second part of this thesis we present an approach

to the construction of approximately C1-smooth isogeometric functions. Starting

from globally C0-smooth functions, the central idea is to bound their gradient

jumps across the patch interface. Numerical examples suggest that the resulting
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functions are sufficiently smooth to solve higher-order problems such as the bihar-

monic equation and maintain full approximation power.

Finally, the third part of this thesis considers smooth transitions between sur-

face patches. In order to improve the overall smoothness of a multi-patch spline

surface, we consider the simultaneous approximation of point and normal data.

If the normal data to be approximated by one patch is taken from the boundary

of its neighbors, this controls the behavior of the resulting spline patch along the

boundary and ensures approximate G1-smoothness of the composite surface.
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Zusammenfassung

Im Zusammenhang mit geometrischer Modellierung und isogeometrischer Ana-

lysis werden komplexe Geometrien als Multipatch-Gebiete, die aus mehreren Ten-

sorprodukt-B-Spline-Flächenstücken bestehen, dargestellt. Sowohl beim Entwurf

eines Multipatch-Gebiets selbst als auch bei der Konstruktion von Funktionen,

die auf dem gesamten Gebiet definiert sind, ist ein wichtiger Aspekt, dass die

Übergänge über Schnittstellen zwischen benachbarten Flächenstücken glatt sind.

Daraus ergeben sich verschiedene Kopplungsmethoden, von denen wir einige in

dieser Arbeit betrachten.

Exakte parametrische Glattheit zu erreichen, ist schwierig und erfordert in den

meisten Fällen strenge Annahmen an die Parametrisierung der Geometrie. Außer-

dem ist approximative Glattheit in vielen industriellen Anwendungen ausreichend.

Wir untersuchen Kopplungsansätze, die auf allgemeinen Gebieten gelten, die aber

nur approximativ C1-glatte isogeometrische Funktionen, bzw. approximativ G1-

glatte Übergänge zwischen den Flächenstücken eines Multipatch-Gebiets erzeugen.

Im Wesentlichen gibt es zwei Möglichkeiten, die Glattheit einer Näherungslö-

sung einer partiellen Differentialgleichung auf einem Multipatch-Gebiet zu fördern:

Einerseits kann man die Tatsache, dass das gegebene Problem auf jedem Einzel-

patch erfüllt ist, ausnutzen. Die patchweisen Formulierungen werden addiert und

verschiedene Glattheitsstrafterme können zu deren Summe hinzugefügt werden.

Ein Beispiel dafür ist die discontinuous Galerkin Methode, der wir uns im ersten

Teil dieser Arbeit widmen. Die diskretisierte Problemstellung enthält Integrale

von Testfunktionen entlang der Schnittstelle zwischen zwei Flächenstücken, deren

Auswertung elementar ist. Wenn die Parametrisierungen der Schnittstelle dabei

nicht übereinstimmen, entstehen zwei maßgebliche Schwierigkeiten, die wir mit

einer Umparametrisierung und geeigneten Quadraturregeln beheben.

Andererseits kann man global glatte Funktionen auf dem gesamten Gebiet

als Testfunktionen in einem gewöhnlichen (d.h. continuous) Galerkin Schema be-

nutzen. Dabei besteht die wesentliche Schwierigkeit in der Konstruktion derartiger
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Funktionen. Im zweiten Teil dieser Arbeit stellen wir einen Ansatz zur Konstruk-

tion von approximativ C1-glatten isogeometrischen Funktionen vor. Die grundle-

gende Idee hierbei ist, von C0-glatten Funktionen auszugehen und den Sprung ihrer

Gradienten über eine Patch-Schnittstelle hinweg zu beschränken. Numerische Ver-

suche legen nahe, dass die so erzeugten Funktionen glatt genug sind, um Probleme

höherer Ordnung wie die biharmonische Gleichung zu lösen und dass sie daneben

die optimale Approximationsgüte besitzen.

Zu guter Letzt befassen wir uns im dritten Teil dieser Arbeit mit glatten

Übergängen zwischen Flächenstücken. Um die Glattheit einer zusammengesetzen

Fläche zu erhöhen, betrachten wir Punkt- und Normalenapproximation auf einem

einzelnen Patch gleichzeitig. Wenn die anzunähernden Normalendaten vom Rand

eines benachbarten Flächenstücks stammen, steuert dieser Vorgang das Verhalten

des Splinepatches entlang seines Randes und stellt die approximative Glattheit der

zusammengesetzten Fläche sicher.
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Chapter 1

Introduction

Partial differential equations (PDEs) are a powerful mathematical tool with which

many different physical phenomena can be modeled, such as diffusion, heat dis-

tribution, elasticity, fluid-structure interaction and electro-magnetic fields, just to

name a few. There are only a few types of boundary or initial value problems

for which a closed-form solution can be found, i.e., in most cases it is not pos-

sible to solve the given problem analytically. Thus, approximate solutions are

constructed. Therefore, the problem is discretized on a finite dimensional space.

The approximate solution is controlled by finitely many unknowns, called degrees

of freedom.

Intensively studied methods for solving partial differential equations numeri-

cally include finite difference schemes, finite element or finite volume methods and

boundary element methods. They share the property of approximating the orig-

inal geometry on which the problem is to be solved. In finite element methods,

the domain is divided into simple forms, e.g. triangles. Based on these, finitely

many basis functions are constructed and finally the approximate solution is rep-

resented as a linear combination of the basis functions. The unknown coefficients

of the basis functions in the solution are the degrees of freedom that we mentioned

earlier.

A drawback of this method is the loss of accuracy when approximating the

geometry. Furthermore, for complicated geometries the triangulation step may

take much more time than the analysis. In real world applications, first the ge-
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10 CHAPTER 1. INTRODUCTION

ometry is modeled with computer aided design (CAD) techniques, using B-splines

or NURBS. Afterwards, it is approximated by a triangulation which is then used

for analysis purposes. All calculations are therefore carried out with respect to an

incorrect representation of the geometry.

Consequently combining the design and the analysis steps is an immense step

forwards. Isogeometric Analysis (IgA), which was introduced in 2005 by Hughes

et. al [14, 15], is an approach to solving a PDE approximately, that closes the

gap between modeling the geometry and numerical simulation. Its main idea is

to use the same functions twice: once in the parameterization of the geometry,

and once as test functions in a Galerkin scheme. B-splines and NURBS possess

the same useful properties as finite elements: although their support is typically

larger than the support of finite elements, the system matrix will be sparse and

they enjoy the same approximation power as finite element functions with respect

to the degree [3].

A key ingredient of the IgA discretization is the parameterization of the physi-

cal domain, called geometry mapping, that transforms the parameter domain into

the physical domain. Often, the geometry mapping is a tensor product parameter-

ization, where the parameter domain is a unit square or a unit cube. Consequently,

more complex domains have to be divided into several single patches, forming a

multi-patch geometry. This is mostly the case in industrial applications, where the

computational domains for example can be cars, motors, turbines or parts thereof.

In this context smoothness of the global solution across patch interfaces is an im-

portant issue. The patch-wise solutions need to coincide along the interfaces, at

least approximately. The first two parts of this thesis focus on different coupling

techniques for isogeometric functions on multi-patch domains. We restrict our-

selves to two-patch domains in order to keep the representation simple. Moreover,

this is sufficient to explain the concepts of the presented coupling methods.

There is a large variety of methods covering the coupling task. In order to point

out differences between them, let us start with describing the standard procedure

of deriving an approximate solution to a PDE.

First, we choose a test function space of infinite dimension, then we multiply

the given problem by a function from the test function space, integrate (over the
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complete domain or patch-wise) and as a last step, we use integration by parts,

i.e., apply Green’s Theorem. This leads to the variational formulation. In the

subsequent discretization step, the problem is transferred to a finite dimensional

setting via the selection of a finite dimensional test function space, where the

approximate solution is to be found. The multi-patch structure of the domain

needs to be taken into account - either in the variational formulation of the problem

or in the choice of the finite dimensional test function space.

The former possibility, i.e., including coupling conditions in the weak formula-

tion, enables us to work with spaces of test functions, which are differentiable only

on the individual patches. Such spaces are called broken Sobolev spaces. Thus,

(weak) differentiability of the test functions across the interface is not guaranteed.

The order of the Sobolev spaces on the single patches must be adapted to the

order of the problem.

Standard coupling methods from finite element methods carry over to the

isogeometric approach. Coupling terms are added to the weak form of a partial

differential equation. For instance, the mortar method [4, 5, 7], Nitsche mortaring

[52, 62] or the discontinuous Galerkin method [46, 54] rely on the fact that the

original problem is fulfilled on each subdomain and that the solution can be coupled

with average and jump terms. Those terms need to be adapted to the order of the

problem, i.e. for second order problems the jump of function values is used, fourth

order problems require to bound the jump of normal derivatives. Analogously,

via the relation between a coercive bilinear form of an elliptic problem and its

equivalent quadratic optimization problem, methods from non-linear optimization

can be applied. Here, discontinuities in the ansatz and test functions are either

directly penalized or smoothness is enhanced via Lagrange multipliers [27]. Let us

have a closer look at some of the mentioned methods.

• Mortar methods use weak continuity conditions on the interfaces. They

require the jump of the mortar functions to be orthogonal in L2 to a space

of trace test functions on the interface. Subsequently, these test functions

are interpreted as Lagrange multipliers. The mortar methods for spectral

and finite elements are explained in more detail in [5] and transferred to the

isogeometric case in [7]. The choice of a finite dimensional subspace of the
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trace test function space is crucial and changes the resulting method.

• Nitsche’s method can be seen to lie inbetween mortar and penalty methods.

Originally it was introduced to weakly enforce Dirichlet boundary conditions,

but in the same fashion, it can be used for interpatch coupling. The main idea

is to replace the Lagrange multipliers of the mortar method by the normal

flux and to add a term to ensure the coercivity of the resulting bilinear form.

• The discontinuous Galerkin (dG) method encourages C1-smoothness by pe-

nalizing the jump of the gradient of the solution across the interface. Its

variational form is derived by rewriting the problem formulation on the in-

dividual patches, followed by adding a penalty term to restore coercivity

of the problem and possibly a symmetrization term. Contrary to contin-

uous Galerkin methods (see below), dG methods allow for hanging nodes

and hence also for adaptive refinement strategies. Furthermore, different

polynomial degrees can be used on different patches.

Discontinuous Galerkin methods

In the first part of this thesis, we focus on dG methods and consider the following

example problem on a domain Ω ⊆ R2 that consists of two patches, i.e.,

Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅.

We denote the partition of Ω by T = {Ω1,Ω2}. The Poisson problem with homo-

geneous Dirichlet boundary conditions consists in finding u : Ω→ R such that

−∆u = f on Ω

u = 0 on ∂Ω
(1.1)

for the a function f ∈ L2(Ω). For this second order problem, the required broken

Sobolev space is given by

Hs(T ) := {f ∈ L2(Ω) : f |Ω1 ∈ Hs(Ω1), f |Ω2 ∈ Hs(Ω2)} (1.2)

with s > 3
2
, where

Hs(Ωk) = {u ∈ L2(Ωk) : Dαu ∈ L2(Ωk)∀ 0 ≤ |α| ≤ s}
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denotes the standard Sobolev space on Ωk.

The publications [12, 54] provide a general description of dG techniques in the

context of finite elements, which have been transferred to isogeometric discretiza-

tions in [9, 44, 45, 46]. A more detailed derivation of the dG formulation of (1.1)

is given at the beginning of Chapter 3. For the time-being let us just state the

symmetric interior penalty dG method for (1.1):

Find u ∈ Hs(T ) such that

2∑
k=1

∫
Ωk

∇u∇v −
2∑

k=1

∑
γ∈∂Ωk

∫
γ

({∇u · n}[v] + {∇v · n}[u] + δ[u][v])

=

∫
Ω

fv ∀v ∈ Hs(T ),

(1.3)

where {·} and [·] denote the average and jump operator, respectively, and δ is

a penalty parameter. Subsequently, (1.3) is discretized by means of isogeometric

function spaces on both patches. The resulting approximate solution to (1.1) will

be approximately, but not exactly parametrically smooth.

To find a solution to the weak form (1.3), it is discretized by means of isoge-

ometric function spaces. The evaluation of the integrals on the interface in (1.3)

is crucial: Since the interface is formed by two boundary edges of two different

patches, the parameterizations of the two edges need to be taken into account.

If they are different from each other, the evaluation becomes considerably more

complicated.

So far, only matching interface parameterizations have been studied in the

context of dG-IgA methods. More precisely, whenever two patches meet in an

interface, then the parameterizations restricted to these interfaces are assumed to

be identical (possibly after affine transformations of the parameter domains), see

[44, 45, 46, 64]. On the one hand, this limitation provides the advantage that

the elements of the patches on both sides of the interface are perfectly matching,

which significantly simplifies the implementation of such methods. On the other

hand, it substantially complicates the creation of multi-patch parameterizations.

As notable exceptions we mention the recent publications [29, 30], where the

authors study gaps and overlaps at the interfaces. While the theory presented in

these papers does not require any assumptions regarding matching interfaces, such
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conditions are assumed to be satisfied in all the computational examples. More

precisely, the meshes of the considered domains fulfill restrictive correspondence

conditions, which are quite similar to the matching case. This is due to the lack of

an implementation for the non-matching case, not to theoretical requirements [46].

Chapter 3 of this thesis is devoted to the study of non-matching parameter-

izations along the interface in the context of a dG-IgA discretization of a given

PDE. We explain the necessary steps to evaluate the affected integrals. The results

presented here were published in [57].

Approximately C1-smooth isogeometric functions

In the second part of this thesis we turn our attention to test function spaces of

globally smooth or approximately smooth functions. Including coupling conditions

in the test function space leads to conforming methods. The weak form of (1.1) is

derived as follows: Let

V := H1
0 (Ω) = {u ∈ L2(Ω) : ∂xu, ∂yu ∈ L2(Ω), u|∂Ω = 0}

denote the Sobolev space of weakly differentiable functions with measurable deriva-

tives on Ω which fulfill the zero-boundary conditions. Multiplying (1.1) with a

function v ∈ V , integrating over Ω and using Green’s theorem yields the following

variational problem:

Find u ∈ V such that ∫
Ω

∇u∇v =

∫
Ω

fv ∀v ∈ V . (1.4)

The finite dimensional test function space Vh is chosen as a subspace Vh ⊆ V , in

particular all test functions have to be weakly differentiable on the whole domain

Ω. Thus, the discretized problem reads:

Find u ∈ Vh such that∫
Ω

∇uh∇vh =

∫
Ω

fvh ∀vh ∈ Vh. (1.5)

Methods of this kind are also refered to as continuous Galerkin methods. The

weak forms (1.4) and (1.5) are considerably simpler than the dG form (1.3). In
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an isogeometric setting, the challenge of this approach lies in constructing test

function spaces of isogeometric functions that are smooth across patch interfaces.

In recent years many publications covered this topic:

• Global C0-smoothness can be realized by identifying degrees of freedom along

the interfaces. Obviously, this only works for matching parameterizations of

the interface. For higher order problems, C0-continuity is not sufficient.

• Fourth order problems like the biharmonic equation require test functions

from H2(Ω). Therefore one needs to construct C1-smooth isogeometric func-

tions which is remarkably more difficult. Recent results for planar domains

[33, 40] are based on the relation between parametric continuity of a function

and geometrical continuity of the corresponding graph surface [26]. A nu-

merical approach to the computation of C1-smooth discretization is presented

in [11]. The volumetric case is covered by [6]. However, the construction of

such functions imposes quite restrictive conditions on the parameterization

of the underlying geometry. Here, the parameterization needs to be bilinear

or bilinear-like.

In [13, 35, 36] the authors provide possibilities to work around some of these

restrictions by suitably reparametrizing non-bilinearly parametrized geome-

tries.

• For sixth order problems, e.g. the triharmonic equation, C2-smooth test

functions are necessary. The construction and analysis of such functions for

isogeometric discretizations on planar bilinearly parametrized domains can

be found in [37, 38, 39].

• In contrast to the previously listed publications, the publications [10, 34]

focus on the construction and analysis of smooth splines on the parame-

ter domain, referred to as multi-patch B-splines with enhanced smoothness,

which subsequently can be used in the context of IgA. They are also suitable

for adaptive refinement, which is an issue that was not addressed in the other

mentioned publications.



16 CHAPTER 1. INTRODUCTION

All mentioned publications refer to the exact notion of parametric or geometric

smoothness, respectively. Computationally, this is a rather strict limitation to

the construction of such functions, as it requires the exact, i.e., symbolic, deter-

mination of the kernel of the system matrix. Also, the analytical derivation of

constructive conditions on such functions is challenging as pointed out earlier.

The fourth chapter of this thesis is devoted to the construction of spaces of

approximately C1-smooth isogeometric functions on general domains. Since we do

not make any assumptions on the parametrization of the geometry, we lose the

notion of exact smoothness. Hence, similarly to the idea of dG schemes, we aim at

bounding the gradient jump of such functions. The resulting spaces will then serve

as discretization spaces. Consequently, no additional penalty terms or constraints

are required in the variational formulation.

Our approach follows the idea that in industrial applications approximate

smoothness may be sufficient for subsequent steps. Furthermore, spaces of ex-

actly smooth isogeometric functions can be of low dimensionality. Approximately

smooth functions could overcome this problem and at the same time be more

efficiently computable. The results presented in Chapter 4 are published in [58].

Spline surface reconstruction

The third part of this thesis is devoted to a slightly different field, namely spline

surface reconstruction.

Spline surface fitting is a well-established technique for surface reconstruction

from point data [20, 28]. It is frequently used in industrial applications, where the

scanning of mechanical components results in point cloud data. For subsequent

processes it is often necessary to find a surface that represents the point data.

Typically, the triangulated data sets are segmented and the resulting pieces are

parameterized and fitted individually. After the fitting step, the collection of the

approximating patches forms the geometric model that is now suitable for further

processing.

The importance of fitting in an industrial context, i.e., as a part of reverse

engineering [61], is evident from the substantial number of publications on this
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topic. Besides algebraic and implicit surfaces [32] as well as subdivision surfaces,

see [48, 50], which appear to be not fully supported by all existing software tools

[59], B-spline and NURBS surfaces are discussed in the literature. We restrict

ourselves to this class of surfaces.

There are various ways to approach the fitting problem. The intuitive least

squares method for B-splines, which reduces to solving a linear system of equations,

depends on finding a valid parameterization and knot vectors, which requires pow-

erful optimization methods [23]. When using NURBS, one also has the possibility

to choose the weights, although this is hardly done in practice.

Advanced techniques include iterative methods for B-splines such as apply-

ing a quasi-Newton method for active curves and surfaces [53], adaptations of

iterative geometric interpolation and approximation algorithms [42], iterative ap-

proaches for NURBS that avoid solving a linear system at all [47], formulations

of the fitting problem as more general constrained optimization problems [22] and

hybrid optimization algorithms for NURBS [63]. Several publications also focus

on improving the computational efficiency, such as [8]. Finally we mention that

progressive iterative approximation [18, 19] is a common technique.

Achieving smoothness across patch interfaces is of fundamental importance for

generating a high-quality geometric model. Approximate methods for the coupling

of patches across interfaces are treated e.g. by [51, 59], whereas exact methods are

discussed in the recent book of [41].

In Chapter 5, we consider the spline fitting problem on a single patch including

normal boundary conditions which makes our approach also suitable for genera-

ting multi-patch models, in which the boundary conditions may arise from data

of neighboring patches. In this context, it is often more important to achieve

approximate G1-smoothness across interfaces between patches than to approxi-

mate given point data along interfaces as good as possible. Also, real-world data

most likely will contain measurement errors, making it less reasonable to enforce

a highly precise fitting result along the interfaces. Mathematically speaking, we

simultaneously approximate point and normal data, where the latter are suitably

weighted. The term containing the normal data can be seen in analogy to the

penalty terms mentioned in the context of coupling an approximate solution to a
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PDE on a multi-patch domain. It penalizes deviations, i.e., jumps, in the normals

between neighboring patches.

Since all patches are considered separately, a geometric model produced by our

fitting procedure will be only approximately G0- (and, in addition to it, approxi-

mately G1-) smooth. In certain applications, such as numerical flow simulations, it

is desirable to maintain global C0-smoothness; this can be achieved by simply iden-

tifying boundary control points of adjacent patches and solving the fitting problem

on all patches simultaneously, as pointed out earlier. The results we present in

this part of the thesis were published in [56].

Outline

This thesis is organized as follows: In Chapter 2 we introduce the common no-

tation for the remainder of this thesis. Chapter 3 addresses the discontinuous

Galerkin method. We will recall the basic principle, introduce the notion of non-

matching interfaces and explain how to tackle the computational difficulties arising

therefrom. The construction of approximately C1-smooth isogeometric functions

is described in Chapter 4. We then leave the isogeometric field to focus on spline

surface reconstruction. The simultaneous fitting of point and normal data by B-

splines will by presented in Chapter 5. Finally, Chapter 6 concludes the thesis and

points out future work.



Chapter 2

Preliminaries

Throughout Chapters 3 and 4 of this thesis we consider a planar multi-patch

domain Ω ⊆ R2 that consists of the two non-overlapping single patches Ω1,Ω2

such that

Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅. (2.1)

We will refer to the partition of Ω as T = {Ω1,Ω2}. The single interface between

Ω1 and Ω2 will be denoted by e = Ω̄1 ∩ Ω̄2. We assume that the two patches only

share this edge. We define the set of all edges

Γ =
2⋃

k=1

∂Ωk (2.2)

of the multi-patch domain. It is the disjoint union of the set of the interface edge

ΓC = {γ ∈ Γ : γ ⊆ Ω̄1 ∩ Ω̄2} = {e} (2.3)

and the set of boundary edges

ΓD = {γ ∈ Γ : γ ⊆ Ω̄k ∩ ∂Ω , k = 1, 2 } . (2.4)

The parameterization of the domain Ω is described by tensor-product spline

functions, either patch-wise as used in Chapter 3 or by a global geometry map

as in Chapter 4. For their construction we will use open knot vectors. Thus, the

boundary curves are spline curves whose control points are the outer control points

of the patch itself.

19
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On the physical domain we define isogeometric functions as concatenation of

tensor-product B-splines and the geometry map. A more detailed description is

given in the following chapters, as we will work with two slightly different construc-

tions. More precisely, in Chapter 3, we consider isogeometric functions that are

defined on single patches, whereas in Chapter 4 we need the isogeometric functions

to be globally C0-smooth.

We will refer to the standard Sobolev space on Ω either by Hs(Ω) or by Hs
0(Ω),

depending on whether the functions in the Sobolev space shall fulfill zero boundary

conditions, i.e.

Hs(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω)∀ 0 ≤ |α| ≤ s} (2.5)

and

Hs
0(Ω) = {f ∈ Hs(Ω) : f |∂Ω = 0}. (2.6)

Furthermore, in the context of multi-patch domains, the notion of broken Sobolev

spaces is important. In the two-patch case this space can be denoted by

Hs(T ) = {f ∈ L2(Ω) : f 1 = f |Ω1 ∈ Hs(Ω1), f 2 = f |Ω2 ∈ Hs(Ω2)}. (2.7)

Analogously to the non-broken case, zero boundary conditions can be incorporated.

The superscript of a functions refers to its restriction to the patch indicated by

the superscript, i.e. fk = f |Ωk , k = 1, 2.

For each patch index k, any function v ∈ H1(Ωk) has a well-defined trace along

any edge γ ∈ ∂Ωk. Hence a function v ∈ H1(T ) defines two traces on the interface

e = Ω̄1∩ Ω̄2, which we denote as v1|e and v2|e, respectively. We use them to define

the average

{v}e =
1

2

(
v1|e + v2|e

)
(2.8)

and the jump

[v]e = v1|e − v2|e (2.9)

across the interface e. These definitions are further extended to boundary edges

γ ∈ ΓD,

{v}γ = vk|γ and [v]γ = vk|γ, k = 1, 2 . (2.10)



Chapter 3

Approximate Smoothness for

Numerical Simulation

In this chapter we study certain aspects of the isogeometric discontinuous Galerkin

(dG) discretization, in particular the computation of the stiffness matrix elements

in the case of non-matching interface parameterizations. Before pointing out the

relevance of non-matching parameterizations we shortly recall the derivation of

the dG scheme for a simple model problem. Hereby, we restrict ourselves to a

two-patch case due to better readability. All observations generalize directly to

domains with more than two patches.

3.1 The model problem and the derivation of a

dG scheme

A detailed derivation of the dG discretization is given in [54]. The adaptation to

the isogeometric setting is discussed in the thesis [9], which also comments on the

choice of the the penalty parameter δ (see below), and in the recent article [44].

We include the derivation in this thesis in order to make this thesis self-contained

and facilitate the comparison of the dG method with other coupling techniques.

Given a two-patch domain Ω̄ = Ω̄1∪ Ω̄2 ⊆ R2 with interface e, we consider the

21
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Poisson problem

Find u :

−∇ · (α∇u) = f on Ω

u = 0 on ∂Ω ,
(3.1)

where f is given and α > 0 is the known diffusion coefficient. Theoretically, α

can be piecewise constant, i.e., it may take different values on every single patch.

However, in order to keep the presentation simple, we restrict ourselves to the case

where α ≡ 1 on Ω.

Starting from (3.1) on a single patch Ωk, we multiply with a test function

v ∈ V := Hs(T ) with s > 3
2
, integrate over Ωk and apply integration by parts, i.e.,

Green’s theorem in the form

−
∫
D

w∆v =

∫
D

∇v∇w −
∫
∂D

(∇v · nD)w

for a bounded domain D, v ∈ H2(D) and w ∈ H1(D). This results in∫
Ωk

∇u∇v −
∫
∂Ωk

(∇u · n)v =

∫
Ωk

fv ∀v ∈ V .

We sum over both patches and get

2∑
k=1

∫
Ωk

∇u∇v −
2∑

k=1

∑
γ∈∂Ωk

∫
γ

(∇u · nk)v =

∫
Ω

fv ∀v ∈ V .

Note that the middle terms contains twice an integral over the interface e = Ω̄1∩Ω̄2.

Since the outer normal vector n2 of the second patch fulfills n2 = −n1 for the outer

normal vector n1 of the first patch, we can rewrite this term as∑
γ∈ΓD

∫
γ

(∇u · n)v +

∫
e

(
(∇u1 −∇u2) · n1

)
v.

By means of the jump operator this equals∑
γ∈Γ

∫
γ

[(∇u · n)v].

A short computation confirms that this again equals∑
γ∈Γ

∫
γ

{∇u · n}[v].
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Thus, the first version of the dG variational form, which is equivalent to (3.1),

reads as follows:

Find u ∈ V such that

2∑
k=1

∫
Ωk

∇u∇v −
∑
γ∈Γ

∫
γ

{∇u · n}[v] =

∫
Ω

fv ∀v ∈ V .

The corresponding bilinear form is not symmetric and, more important, not coer-

cive. Therefore, we add the terms∫
e

δ

|γ|
[u][v],

−
∫
e

{∇v · n}[u],∑
γ∈ΓD

∫
γ

(∇v · n)u =
∑
γ∈ΓD

∫
γ

{(∇v · n)}[u] and

∑
γ∈ΓD

∫
γ

δ

|γ|
uv =

∑
γ∈ΓD

∫
γ

δ

|γ|
[u][v],

which are consistent since for the exact solution all these terms vanish, as the

exact solution is smooth across the interface and vanishes on ∂Ω. The first term is

a penalty term, penalizing jumps of the test functions weighted with the penalty

parameter δ which has to be chosen sufficiently large to restore coercivity. The

value |γ|measures the length of the edge γ. The second and the third term together

symmetrize the bilinear form. The third and the fourth term weakly impose the

Dirichlet boundary conditions. The final problem is given as follows:

Find u ∈ V such that

2∑
k=1

∫
Ωk

∇u∇v −
∑
γ∈Γ

∫
γ

(
{∇u · n}[v] + {∇v · n}[u]− δ

|γ|
[u][v]

)
=

∫
Ω

fv ∀v ∈ V .

(3.2)

It is also possible to impose the Dirichlet conditions strongly via an L2 pro-

jection. In case of inhomogeneous boundary conditions the problem can then be

homogenized. When both u and the test functions v vanish on the boundary ∂Ω,

the dG variational form only contains integrals on the patches Ωk and the interface

e.
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Finding a solution to the final problem is called the symmetric interior penalty

dG method for the Poisson problem. An approximate solution is constructed by

discretizing the problem with respect to an isogeometric setting, and evaluating the

discrete terms. This is where non-matching parameterizations make a significant

difference.

3.2 Non-matching parameterizations along the

interface

Recent work has motivated us to investigate the effect of non-matching interface

parameterizations in the context of discontinuous Galerkin - Isogeometric Analysis

(dG-IgA). We aim to give a complete description of the necessary computational

steps for applying the theoretical results of [29, 30, 44, 45, 46, 64] to the case of non-

matching parameterizations at the interfaces. In order to keep the presentation

simple, we restrict ourselves to planar two-patch domains and we assume that the

interfaces are geometrically matching, thus they have neither overlaps nor gaps.

However, it is clear that the results from [29, 30] apply to the non-matching case

also, as the theory presented there is sufficiently general.

More precisely, the assembly of the local stiffness matrices derived from the

dG bilinear form requires the computation of integrals of the type∫
e

D bki (x)D′ b`j(x)dx , (3.3)

where D,D′ are differential operators. As we shall see, non-matching interface

parameterizations give rise to two problems that need to be treated separately.

The first one concerns the evaluation of bki (x) and b`j(x) at the same position

x on the interface. Due to the use of non-matching parameterizations, a point x

will have two possibly different preimages in the parameter domains of the two

patches joined by the interface respectively. To identify pairs of corresponding

preimages we use reparameterizations of the preimages of the interface. We also

investigate the influence of the quality of the reparameterization on the accuracy

of the overall result.
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The second problem is related to the use of numerical integration methods.

We need to find a quadrature method whose exactness does not depend on the

smoothness of the integrands. We present different approaches, one resulting from

dividing the element on which quadrature is performed and another one making use

of automatized element splitting. The performance of both approaches is explored

in numerical experiments.

The remainder of this chapter is structured as follows: We describe the discrete

problem we will focus on in the next section. We then state the two issues of eva-

luation and numerical integration, as described above. Section 3.5 treats the first

problem of finding suitable reparameterizations, while Section 3.6 is devoted to the

different quadrature techniques. Results of numerical experiments are presented

in Section 3.7. Finally we conclude the chapter.

3.3 DG-IgA discretization of the model problem

The isogeometric discretization of the given model problem stated previously is

derived as follows. Each physical subpatch Ωk of the domain is parameterized by

an associated geometry mappingGk which maps the parameter domain Ω̂k = [0, 1]2

to Ωk by means of tensor-product B-splines βki , k = 1, 2, where the subscript i refers

to the index of the respective basis function. The superscript k indicates the patch

index. Thus, Gk is given in the form

Gk(ξ, η) =
∑
i∈Ik

P k
i β

k
i (ξ, η), (ξ, η) ∈ Ω̂k, (3.4)

where P k
i ∈ R2 are the two-dimensional control points for patch Ωk and Ik is

the index set corresponding to the basis functions defined on Ω̂k. A sketch of the

setting is shown in Figure 3.1. With the parameterization, the set Γ of all edges

can equivalently be written as

Γ =
2⋃

k=1

{Gk([0, 1], 0), Gk([0, 1], 1), Gk(0, [0, 1]), Gk(1, [0, 1])}. (3.5)

The knot vectors of the B-splines βki split the parameter domain into elements,

and their images induce a mesh on the physical domain. The maximal element
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1

1

0 1

1

0

Ω̂1 Ω̂2

Ω1 Ω2 Ω

e

G1 G2

Figure 3.1: Multi-patch domain with two patches Ω1,Ω2, one interface e and

geometry mappings G1, G2.

side length will be denoted by h. We do not assume that the knot vectors of the

patches are identical.

An isogeometric basis function bki on the physical patch Ωk is the push-forward

of a B-spline βki defined on the parameter domain Ω̂k,

bki (x) =


(
βki ◦

(
Gk
)−1
)

(x) if x ∈ Ωk ,

0 otherwise.
(3.6)

The dG-IgA discretization space is spanned by the isogeometric basis functions on

both patches, i.e., it considers the subspace

Vh = span {bki : i ∈ Ik, k = 1, 2} ⊆ H1(T ) , (3.7)

of the broken Sobolev space. The dG-IgA discretization

find u ∈ Vh : a(u, v) = F (v) ∀v ∈ Vh (3.8)

of the Poisson problem (3.1) uses the bilinear form

a(u, v) =
2∑

k=1

ak1(u, v)−
∑
γ∈Γ

(
aγ2,1(u, v) + aγ2,2(u, v)

)
+
∑
γ∈Γ

aγ3(u, v) (3.9)
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with

ak1(u, v) =

∫
Ωk

∇u · ∇vdΩ , (3.10)

aγ2,1(u, v) =

∫
γ

{∇u · n}γ[v]γdγ , aγ2,2(u, v) =

∫
γ

{∇v · n}γ[u]γdγ , (3.11)

aγ3(u, v) =

∫
γ

δ

h
[u]γ[v]γdγ (3.12)

and the linear form

F (v) =

∫
Ω

fvdΩ . (3.13)

The bilinear and linear forms coincide with the terms in (3.2). We introduce

symbols for the single terms of the bilinear form to facilitate later referencing. The

second group of terms aγ2,1 and aγ2,2 considers normal vectors n = ne of the interface

e, which need to comply with the chosen orientation of the edges (determined by

the patch numbering). The last terms aγ3 in the bilinear form are the penalty terms

mentioned before, which involve the sufficiently large parameter δ. They depend

on the element size h, i.e. on the length of the knot spans1.

The discretization (3.8) defines the associated dG norm

‖u‖2
dG =

2∑
k=1

ak1(u, u) +
∑
γ∈Γ

aγ3(u, u) , (3.14)

where in ak1(u, u) the gradient of u is restricted to Ωk, see again [44].

The coefficients uki of the approximate solution

uh =
2∑

k=1

∑
i∈Ik

uki b
k
i (3.15)

are found by solving the linear system Su = b with

S =
(
s(i,k),(j,`)

)
(i,k),(j,`)

,

b =
(
b(j,`)

)
(j,`)

,

u =
(
uki
)

(i,k)
,

1For simplicity we consider uniform knots only. If this is not the case then one may consider

quasi-uniform knots instead, choosing a parameter that controls the size of all knot spans.
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where

s(i,k),(j,`) = a
(
bki , b

`
j

)
, i ∈ Ik , j ∈ I` , k, ` = 1, 2, and

b(j,`) = F
(
b`j
)
, j ∈ I` , ` = 1, 2 .

3.4 Integrals along interfaces

Evaluating the forms in (3.9) involves integrals along interfaces, which pose con-

siderable difficulties. We discuss the evaluation of these quantities in more detail,

considering again the domain shown in Figure 4.1. As a representative example

we shall focus on ae2,1, i.e., we consider the specific edge γ = e. All observations

generalize directly to other terms.

In this situation we obtain

ae2,1(u, v) =

∫
e

(
∇u1|e · n

)
v1|e +

(
∇u2|e · n

)
v1|e

−
(
∇u1|e · n

)
v2|e −

(
∇u2|e · n

)
v2|ede .

The stiffness matrix is a combination of several matrices, each of which is con-

tributed by one of the four forms in (3.9) defining it. In particular we focus on the

contribution of ae2,1.

Taking into account that

b2
i |Ω1 = 0 , ∇b2

i |Ω1 = 0 ∀i ∈ I2 ,

b1
i |Ω2 = 0 , ∇b1

i |Ω2 = 0 ∀i ∈ I1 ,

we find that only the expressions

ae2,1
(
bki , b

`
j

)
= (−1)`+1

∫
e

(
∇bki |Ωk · n

)
b`j|Ω`de (3.16)

contribute to the element s(i,k),(j,`) of the stiffness matrix.

In order to compute these values we use an appropriate numerical quadrature

rule, which means that we have to evaluate these products on the interface e. This

is no major problem if k = ` since the integral involves only one trace in this case.
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However, the situation is more complicated if k 6= ` since the (possibly different)

parameterizations of the interface need to be taken into account. In the remainder

of this section we discuss the evaluation of ae2,1
(
b1
i , b

2
j

)
in more detail.

The interface

e = G1([0, 1]2) ∩G2([0, 1]2) = G1(1, [0, 1]) = G2(0, [0, 1]) (3.17)

is parameterized by the restrictions

L = G1|(G1)−1(e) and R = G2|(G2)−1(e) , (3.18)

as sketched in Figure 3.2. These two different representations of the same interface

are related by the reparameterizations

λ : [0, 1]→ {1} × [0, 1] (3.19)

and

% : [0, 1]→ {0} × [0, 1] (3.20)

via

L ◦ λ = R ◦ %. (3.21)

The construction of suitable reparameterizations λ and % is the first major problem

related to the evaluation of this term. We will discuss it in the next section.

These parameterizations will be used to represent the edge as

e = (L ◦ λ)([0, 1]) = (G1 ◦ λ)([0, 1]) = (G2 ◦ %)([0, 1]) = (R ◦ %)([0, 1]) . (3.22)

Finally we define P = L ◦ λ = R ◦ % and arrive at

− ae2,1
(
b1
i , b

2
j

)
=

∫
e

(
∇b1

i (x)|Ω1 · n(x)
)
b2
j(x)|Ω2dx

=

∫
e

[(
∇G1(x)

)−1∇β1
i

(
(G1)−1(x)

)
|Ω1 · n(x)

]
β2
j

(
(G2)−1(x)

)
|Ω2dx

=

∫ 1

0

[(
∇G1 (P (t))

)−1∇β1
i

(
L−1 (P (t))

)
· n (P (t))

]
β2
j

(
R−1 (P (t))

)
‖Ṗ (t)‖dt

=

∫ 1

0

[(
∇G1 (P (t))

)−1∇β1
i (λ(t)) · n (P (t))

]
β2
j (%(t)) ‖Ṗ (t)‖dt .
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1
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e

G1 G2
L R

Figure 3.2: Multi-patch domain with two patches Ω1,Ω2 and geometry mappings

G1, G2. The mappings L and R are the parameterizations of the interface e, i.e.,

the restriction of the geometry mappings to its preimage.

The integral in the last line is evaluated by a quadrature rule. However, the choice

of the quadrature rule, which is the second major problem related to the evaluation

of this term, is nontrivial and will be discussed further in Section 3.6. In fact, the

choice of the rules needs to take the different knots of the functions β1
i , β

2
j , λ

and % into account. While one will generally choose the same knots for λ and %,

the knots of β1
i and β2

j are subject to a non-linear transformation and cannot be

assumed to be identical.

3.5 Finding the reparameterizations

It is quite common in the literature to assume matching parameterizations or

almost matching ones, see [14, p. 4148], [15, p. 87], [44, 45, 46, 64]. In this

situation, the choice of the reparameterizations λ and % is trivial, as they are sim-

ply linear parameterizations (possibly reversing the orientation) of the preimages

of the interface in the parameter domains. However, the restriction to matching
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Figure 3.3: Multi-patch domain with geometry maps G1 and G2, their restrictions

L and R to the preimages of the interface and reparameterizations λ and %

parameterizations poses constraints on the construction of multi-patch parameter-

izations, making it essentially impossible to parameterize the individual patches

separately. This fact motivates us to study the non-matching case.

More precisely, we consider situations where the condition (3.21) cannot be

satisfied by considering linear reparameterizations λ and %. Clearly, the condition

does not determine λ and % uniquely. We fix one of the mappings, say λ, and

compute the remaining one, %. Figure 3.3 visualizes the relations between the

mappings.

The unknown mapping % satisfies % = R−1 ◦ L ◦ λ. We compute it by least-

squares approximation of point samples, as follows:

1. For a given number N of samples, we evaluate

%i = R−1 ◦ L ◦ λ
(
i

N

)
(3.23)

by performing the closest point computations

%i = argmin
ξ∈{0}×[0,1]

∥∥∥∥L ◦ λ( i

N

)
−R(ξ)

∥∥∥∥ , i = 0, . . . , N, (3.24)
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where ‖ · ‖ is the Euclidean norm. This formulation also applies to the case

of geometrically inexact interfaces (cf. [29, 30]).

2. We choose a suitable spline space (e.g. linear, quadratic or cubic splines

with a few uniformly distributed inner knots) and find the control points

cj ∈ {0} × [0, 1] of the associated B-splines Nj, j = 1, . . . ,m, by solving the

linear least-squares problem

N∑
i=1

(
m∑
j=1

cjNj

(
i

N

)
− %i

)2

−→ min, (3.25)

cf. [20]. The influence of the choice of the spline space for % will be discussed later

in Section 3.7. The given reparameterization λ is chosen as a linear polynomial.

We will refer to the case where at least one of the mappings λ and % is different

from the identity as non-matching parameterizations at the interface.

3.6 Numerical integration

The evaluation of

ae2,1
(
b1
i , b

2
j

)
=

∫ 1

0

[(
∇G1 (P (t))

)−1∇β1
i (λ(t)) · n (P (t))

]
β2
j (%(t)) ‖Ṗ (t)‖dt .

(3.26)

requires integration with respect to the parameter t, which varies in the parameter

domain [0, 1]. This is done by applying numerical quadrature and we present

several strategies for doing so.

3.6.1 Gauss quadrature with exact splitting

Gauss quadrature can be applied to segments of analytic functions. Consequently,

we split the parameter domain [0, 1] into segments (separated by junctions) where

the integrand satisfies this requirement. Three types of junctions arise:

• the inverse images λ−1(κ1
i ) of the knots κ1

i that were used to define the B-

splines β1
j ,
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Figure 3.4: Exact splitting of a knot span and application of a quadrature rule to

each subsegment

• the inverse images %−1(κ2
i ) that were used to define the B-splines β2

j , and

• the knots τi that were used to define the B-splines Nj in (3.25).

These types are visualized in Figure 3.4.

Consequently we perform Gauss quadrature with exact splitting by applying

the following algorithm:

• Compute all junction points (all three types) in [0, 1],

• sort the junction points, subdivide the domain into segments accordingly,

• subdivide the resulting segments if they are too long,

• apply a Gauss quadrature rule to each segment and sum up the contributions.

As a disadvantage, the inversion of λ and % is costly and has to be done with high

accuracy, as the sorting depends on it. Furthermore, the method may result in

many segments of varying lengths.
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We use Gauss quadrature with p + 1 nodes per element (which exactly inte-

grates polynomials of degree 2p + 1), where p is the degree used for defining the

dG-IgA discretization, cf. [49].

3.6.2 Gauss quadrature with uniform splitting

A computationally simpler approach is to use uniform subdivision, as follows:

• Split the domain [0, 1] uniformly into M segments, where M is a multiple of

the number of knot spans used to define the B-splines Nj in (3.25),

• apply a Gauss quadrature rule to each segment and sum up the contributions.

As we shall see later, it is mandatory to use large values of M in order to reach

the desired level of accuracy. This is due to the fact that the junctions of the first

two types listed in the previous section may still be located within the segments

obtained by uniform splitting. On the other hand, the use of uniform refinement

also creates many small segments that could be merged into larger ones without

compromising the accuracy. This can be exploited by using adaptive quadrature.

3.6.3 Adaptive Gauss quadrature

We recall the main idea of adaptive quadrature, cf. [24]. In order to evaluate the

integral

I =

∫ b

a

f(x)dx (3.27)

of an integrable function f over an interval [a, b] adaptively one computes two

different estimates I1 and I2 of I by using two different integration methods. One

assumes that one of these estimates, say I1, is more accurate than the other. Next,

one computes the relative distance between I1 and I2 taking into account a given

(or chosen) tolerance tol, e.g. machine precision. If the difference is small enough,

one chooses I1 as the value of the integral
∫ b
a
f(x)dx. If this is not the case one

splits the interval [a, b] into two subintervals,

[a, b] = [a,m] ∪ [m, b] , where m =
a+ b

2
,
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and evaluates I by summing up the two contributions. This means that one

applies the procedure of computing two different estimates and checking their rel-

ative difference to both subintervals. Adaptive quadrature is therefore a recursive

procedure, which is summarized in Algorithm 1.

Algorithm 1 Adaptive Quadrature: Basic routine.

AdaptQuad(f, a, b, tol)

1: Input: f , a , b , tol where f is an integrable function, a and b are the interval

boundaries and tol is a given tolerance

2: Choose knots ui and weights wi , i = 1, . . . , n .

3: Compute I1 =
∑n

i=1wif(ui) .

4: Choose knots ũi and weights w̃i , i = 1, . . . ,m .

5: Compute I2 =
∑m

i=1 w̃if(ũi) .

6: if |I1 − I2| ≤ tol ·|I1| then

7: Return I1

8: else

9: Return

AdaptQuad

(
f, a,

a+ b

2
, tol

)
+ AdaptQuad

(
f,
a+ b

2
, b, tol

)
.

10: end if

Note that the stopping criterion has to be chosen with care and in fact line 6

in the algorithm is a slight oversimplification of it. See [24] for further information.

We apply this procedure to the knot spans that were used to define the B-

splines Nj in (3.25). Therefore we choose I1 as a Gauss quadrature rule with p+ 1

quadrature knots, where again p is the degree of the basis functions in the dG-IgA

discretization space. For the computation of I2 we split the interval manually into

two halves, apply a a Gauss quadrature rule of the same order on both halves, and

sum up. The tolerance tol is set to machine precision.

As an advantage, adaptive quadrature can be performed without inverting the

reparameterizations. Moreover, it avoids the oversegmentation problem that was

present for the previous approach. We observed experimentally that the adap-

tive procedure accurately detects the junction points and subdivides the domain
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Figure 3.5: Patch and its control net. Left: matching parameterizations at the

interface. Right: non-matching parameterizations at the interface.

accordingly. Clearly, the implementation is more costly and requires a recursive

algorithm.

3.7 Numerical results

We examine the performance of the quadrature methods presented in Section 3.6

as well as the influence of the accuracy of the reparameterization. All experi-

ments were performed using G+Smo2, an object-oriented C++ IgA library named

“Geometry + Simulation Modules”.

3.7.1 Reference results

As a reference we will first show the convergence plot of the solution of the Pois-

son equation in the case of matching parameterizations, i.e. for λ = % = id. In

this case we can restrict ourselves to a simple quadrature rule. There is no need

for using more elaborate versions of numerical integration. Furthermore, since

λ = % = id, we do not need to consider the influence of the quality of the reparam-

eterization. More precisely, we consider the two-patch domain with biquadratic

matching interface parameterizations shown in Figure 3.5, left.

Figure 3.6 demonstrates the convergence behaviour of the numerical solutions

that were obtained for various values of the element size h that was used to define

the dG-IgA discretization. We consider a problem with a known solution and

2G+Smo: gs.jku.at
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Figure 3.6: Matching parameterizations at the interface, convergence behaviour of

error in different norms: L2 norm (blue curve), dG norm (red curve).

measure the error as the difference to it. The quadrature method we used is Gauss

quadrature with three quadrature knots. A convergence rate of three for the L2

error and of two for the dG error is clearly visible. This is in accordance with the

theoretical predictions, see [3, 15].

3.7.2 Influence of the quadrature rule

We now consider a different parameterization of the same computational domain,

with non-matching parameterizations of the interface, see Figure 3.5, right. Again

we use biquadratic patches. Now we need to use a more complicated integration

technique, and we consider the three approaches that were described in Section 3.6.

Figure 3.7, left and right, visualizes the convergence behaviour measured in

the L2 and dG norms respectively. Each plot contains four curves, corresponding

to four different numerical quadrature techniques. More precisely, we consider

Gauss quadrature with exact splitting (green), Gauss quadrature with uniform

splitting into 10 (blue) and into 30 (red) segments, and adaptive Gauss quadrature
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Figure 3.7: Influence of the quadrature rule. Left: Convergence behavior of the

error in L2 norm. Right: Convergence behavior of the error in dG norm. Blue

and red curves: 10 and 30 uniform segments per t-knot span. Green curves:

exact splitting of the knot spans. Yellow curves: adaptive quadrature. Note

that the yellow curve coincides with the green one for smaller values of h. Exact

representation of the reparameterizations λ and %.

(yellow). We observe that the first and the last method perform better than the

results based on uniform splitting and they achieve the optimal convergence rates

(compare with Figure 3.6). In particular we note that using uniform quadrature

leads to a reduced order of convergence for smaller mesh sizes h. Even the use of a

very fine but uniform segmentation (30 (red) instead of 10 (blue) segments) does

not improve this significantly.

Based on these observations we decided to use solely adaptive and exact Gauss

quadrature in the remaining example.

3.7.3 Influence of the reparameterization

Next we analyse the influence of the quality of the representation of the reparame-

terization. Consider again the parameterization of the domain in Figure 3.5, right,
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with non-matching parameterizations of the interface. We compare three different

choices of the reparameterizations λ and %.

For the first reparameterization, which generates the results represented by the

blue curve in Figure 3.8, we choose polynomials λ and % such that the equation

L ◦ λ = R ◦ % is exactly satisfied. In this case it was possible to find such polyno-

mials, due to the particular construction of the example. However, this would be

impossible in general and it is used here to generate a reference result.

The second and third reparameterizations (red and green curves) were obtained

using the Algorithm from Section 3.5 to find %, while λ was chosen as a linear

polynomial. The second reparameterization uses a linear spline with 8 segments

and has an L2 error of 1.3 · 10−2, and the third reparameterization uses a cubic

spline with 4 segments and has an L2 error of 3.1 · 10−15.

Figure 3.8 compares the errors in the L2 (left) and dG norms (right) for the

three reparameterizations. We observe that using a high quality reparameteriza-

tion is essential for the convergence of the method. Depending on the accuracy

of the reparameterization, h-refinement only works until it reaches a critical mesh

size, where further refinement does not have any effect.

The plots show the results obtained by using adaptive Gauss quadrature. The

exact method gives virtually identical results.

3.7.4 Comparison of exact and adaptive quadrature

We perform an experimental comparison of the computational complexity of exact

and adaptive quadrature for the domain in Figure 3.5, right.

First we demonstrate the effect of using adaptive quadrature, by showing the

automatically created splitting points in Figure 3.9. We used an accuracy of 10−6

instead of machine precision for this picture to obtain a clearer image. Both patches

were uniformly refined into 4× 4 elements by knot insertion. The mappings λ and

% are cubic splines on [0, 1] with four knot spans of equal length. Their knots

τi coincide with the inverse images λ−1(κ1
i ), as the first mapping is simply the

identity. The adaptive quadrature, which is applied to the knot spans [τi, τi+1],

thus creates additional splitting points around the inverse images %−1(κ2
i ), as shown

in the Figure. In this particular case, only one splitting point (at 0.5625) is created
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Figure 3.8: Influence of the reparameterization. Adaptive quadrature on interface

integrals. Left: Convergence behaviour of the error in L2 norm. Right: Con-

vergence behaviour of the error in dG norm. Blue curves: Exact representation

of λ and %. Red curves: Approximation error of % ≈ 0.0131167. Green curves:

Approximation error of % ≈ 3.10616 · 10−15



3.8. SUMMARY 41

Figure 3.9: Splitting points created by adaptive quadrature - see text for details.

near %−1(κ2
2) = 0.5615 since this suffices to reach the desired accuracy.

These results indicate that, unlike uniform Gauss quadrature, adaptive quadra-

ture avoids over-segmentation of the integration domains. Still, it splits the knot

spans more often than exact Gauss quadrature, which also results in a higher

number of quadrature knots and thus evaluations.

In order to analyze this effect, Figure 3.10 compares the number of evaluations

(i.e., quadrature knots) used by exact and adaptive Gauss quadrature for increas-

ing numbers of elements. In addition, we also show the number of root finding

operations (which are more expensive than evaluations) needed to compute the

splitting points of exact Gauss quadrature. Clearly, adaptive quadrature requires

more evaluations than exact splitting. However, for sufficiently fine discretizations,

the number of evaluations in the interior of the patches dominates the total effort.

3.8 Summary

We used a simple model problem to investigate the complications that arise from

using non-matching interface parameterizations within the framework of Isogeo-

metric Analysis on a multi-patch domain, using discontinuous Galerkin techniques

to couple terms across the interfaces. The discretized discontinious Galerkin bi-

linear form contains integrals of products of isogeometric functions, defined on

neighboring patches, on the common interface. The interface parameterization is

crucial for their evaluation. More precisely, we studied two particular problems.

Firstly, we explored the use of reparameterizations to identify pairs of associated

points on the common interface. This was found to be useful for correctly eva-

luating products of basis functions. Secondly, we addressed the construction of

a suitable procedure for numerical integration, in order to compute the value of
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Figure 3.10: Number of quadrature knots and root finding operations needed by

exact and adaptive quadrature for increasingly finer discretizations.

integrals of the named products. Using exact quadrature combined with splitting

the knot spans accordingly and applying adaptive quadrature lead to similar error

decays of the approximate solution. As demonstrated in our numerical experi-

ments, both problems are important for ensuring the optimal rate of convergence

for the numerical simulation. If the reparameterization or the quadrature rule is

not accurate enough, the approximate solution will not converge with the optimal

convergence rate. Finally we investigated the computational effort of exact and

adaptive quadrature. Although the adaptive technique required more function

evaluations, the overall effort on the patch interior outweighed the effort of the

computations on the interface.



Chapter 4

Approximately C1-smooth Isogeo-

metric Functions

In this chapter, we follow a different approach to coupling isogemetric functions

across patch interfaces on multi-patch domains. In contrast to working with broken

Sobolev spaces and adapting the variational formulation to couple the solution,

this chapter is devoted to the construction of approximately smooth isogeometric

test functions on the whole domain. In turn, changing the variational form to a

patch-wise formulation is not necessary. The coupling of isogeometric functions

across patch interfaces recently attracted substantial interest:

• C0-coupling of isogeometric functions is easily realizable by identifying the

coefficients of neighboring basis functions along an interface as one degree

of freedom. However, for higher order problems, C0-continuity of the test

functions is not sufficient.

• For such differential equations, C1-smooth test functions are required. Their

construction is considerably more complicated. Recent results rely on the re-

lation between geometrical smoothness of a graph surface and parameterical

smoothness of the underlying functions [26, 40]. However, such construc-

tions are based on certain assumptions about the parameterization of the

underlying domain, which are needed to ensure sufficient flexibility of the

43
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resulting discretizations. For instance, in [33, 40], the authors use to bilinear

or bilinear-like parameterizations.

• In [13, 35, 36] it is shown that non-bilinear domains almost always can be

reparameterized in order to match the necessary assumptions.

• Also [11] considers more general domains. However, the authors compute

the coefficients of the isogeometric basis functions numerically and not sym-

bolically as it is done in [33, 40].

• In a similar fashion to [33, 40], the papers [37, 38, 39] are devoted to the con-

struction of C2-smooth isogeometric functions, which are required for sixth-

order problems like the triharmonic equation. Again, bilinearly parameter-

ized domains are considered.

In order to avoid the limitation to bilinear-like parameterizations, we relax

the construction by considering approximate instead of exact C1-smoothness of

isogeometric functions on multi-patch domains. This enables us to generate func-

tion spaces on general (not bilinear-like) domains. Our construction is based on

suitably chosen bilinear forms. More precisely, we explore two different forms and

obtain two different function spaces. Starting from globally C0-smooth functions,

we provide bounds on the gradient jump of the corresponding approximately C1-

smooth isogeometric functions.

The rest of this chapter is organized as follows: In Section 1 we provide the

necessary notation and we introduce two different bilinear forms B1 and B2. Section

2 describes the construction of a space of approximately C1-smooth isogeometric

functions based on B1 and investigates its advantages and drawbacks, in particular

we will find that the resulting space suffers from not containing trivially smooth

functions. In order to overcome this deficiency, in Section 3 we carry out an

analogous construction based on the slightly modified bilinear form B2. Section 4

is devoted to numerical experiments concerning the approximation power and the

dimension of the space. In particular, we will provide experiments that suggest

that the functions we construct are smooth enough to solve fourth-order problems

like the biharmonic equation. In Section 5 we conclude this chapter and point out

possible future research.
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Figure 4.1: Two patch domain Ω parameterized by a bicubic geometry map G.

The knot vectors are given by [−1,−1,−1,−1, 0, 0, 0, 1, 1, 1, 1]×[0, 0, 0, 0, 1, 1, 1, 1].

4.1 Preliminaries

Consider again a planar two-patch domain Ω̄ = Ω̄1 ∪ Ω̄2 ⊆ R2 with interface e

between the single patches Ω1 and Ω2, as depicted in Figure 4.1. Although we

will still work in an isogeometric setting, the notation will slightly change. In

contrast to the previous chapter, here the domain will be parameterized on a

single parameter domain Ω̂ = [−1, 1] × [0, 1] by only one tensor-product B-spline

geometry map G of the form

G : Ω̂→ Ω : (ξ, η) 7→
∑
i∈I

Piβi(ξ, η). (4.1)

Therefore, no superscript is required to indicate that patch index and we will

no longer use k and ` for that purpose. Instead, Pi ∈ R2 are control points

and βi are tensor-product B-splines of bidegree (p1, p2) with global index set I,

defined by open quasi-uniform knot vectors with maximal knot span sizes h1, h2

in ξ and η-direction, respectively. By h we denote the maximal element length

h = max{h1, h2}. The multiplicities of the inner knots do not exceed p− 1, except
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for the knot 0 with respect to ξ, which appears p times. The simplest instance of

the knot configuration is visualized in Figure 4.1. The patch interface is

e = G({0} × [0, 1]).

The associated isogeometric basis functions

bi(x) =
(
βi ◦G−1

)
(x), i ∈ I, (4.2)

are collected in the vector

b(x) = (bi(x))i∈I (4.3)

and span the isogeometric discretization space

Vh = span{bi : i ∈ I} ⊆ C0(Ω). (4.4)

The last inclusion holds due to the choice of the knot vector. This is another

difference to the situation in Chapter 3, where we worked with broken Sobolev

spaces.

Finally we recall the definition of the jump operator

[f ] = f 1|e − f 2|e,

which is defined for any function f ∈ L2(Ω) with

f 1 = f |Ω1 ∈ H1(Ω1), f 2 = f |Ω2 ∈ H1(Ω2).

For functions with f 1 ∈ H2(Ω1) and f 2 ∈ H2(Ω2) the gradient jump is defined

analogously.

We will use two different bilinear forms in order to construct approximately

C1-smooth isogeometric functions on Ω. The first one is given by

B1 : Vh × Vh → R : (f, g) 7→ ε

∫
Ω

f(x)g(x)dx−
∫
e

[∇f(x)]T [∇g(x)]dx (4.5)

and depends on a positive parameter ε. The second one takes the form

B2 : Vh × Vh → R : (f, g) 7→
∫
e

[∇f(x)]T [∇g(x)]dx. (4.6)
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More precisely, our aim is to construct isogeometric functions with a bounded

gradient jump ‖[∇f ]‖L2(e), and the bilinear forms B1 and B2 are designed with

this objective in mind. For the first one, a suitable value of ε has to be chosen in

advance. It controls the magnitude of the bound. The spaces of approximately

smooth isogeometric functions obtained by using B1 and B2 have different proper-

ties, although the constructions themselves are quite similar.

4.2 Results for B1

We show that the bilinear form B1 yields a mesh-size independent bound on the

gradient jump. However, we will also see that this space lacks optimal approxima-

tion power.

4.2.1 Construction of approximately smooth functions

We consider functions f, g ∈ Vh with

f(x) = uTb(x), g(x) = vTb(x), (4.7)

with coefficient vectors u, v ∈ R|I|. Consequently, B1(f, g) can be rewritten in

matrix-vector-form as

B1(f, g) = uT (εM −Q)v, (4.8)

where

M = (mi,j)i,j∈I with mi,j =

∫
Ω

bi(x)bj(x)dx (4.9)

and

Q = (qi,j)i,j∈I with qi,j =

∫
e

[∇bi(x)]T [∇bj(x)]dx, (4.10)

as confirmed by a short computation:∫
Ω

f(x)g(x)dx =

∫
Ω

(∑
i∈I

uibi(x)

)(∑
j∈I

vjbj(x)

)
dx

=
∑
i∈I

∑
j∈I

uivj

∫
Ω

bi(x)bj(x)dx



48 CHAPTER 4. MULTI-PATCH ISOGEOMETRIC FUNCTIONS

=
∑
i∈I

∑
j∈I

uivjmi,j

= uTMv.

An analogous computation confirms
∫
e
[∇f(x)]T [∇g(x)]dx = uTQv. The matrices

M and Q are symmetric positive semi-definite, as

uTMu = ‖f‖2
L2(Ω) ≥ 0 (4.11)

and

uTQu = ‖[∇f ]‖2
L2(e) ≥ 0. (4.12)

Now let 0 ≤ λ1 ≤ . . . ≤ λn be the non-negative eigenvalues of εM − Q in

ascending order and let c1, . . . , cn be the corresponding eigenvectors, n ≤ |I|. The

eigenvectors satisfy

(ck)T c` = 0 and (ck)T ck = 1 for k 6= `, 1 ≤ k, ` ≤ n, (4.13)

possibly after performing the Gram-Schmidt orthonormalization, if multiple eigen-

values are present.

We define

G1,ε
h := span

{∑
i∈I

cki bi(x) : k = 1, . . . , n

}

=

{∑
i∈I

dibi(x) : d ∈ span
{
c1, . . . cn

}}
.

(4.14)

as the space of approximately C1-smooth isogeometric functions.

4.2.2 Properties of the function space

By construction, G1,ε
h is a linear space. As an immediate consequence from its

definition, we obtain a mesh-size independent bound on the gradient jump of

functions in this space, i.e., the bound does not weaken as we refine the mesh.

This is different from standard inverse estimated for isogeometric functions [3].

We denote by C ∈ R|I|×n the matrix containing the eigenvectors c1, . . . , cn as

column vectors.
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Proposition 1. The gradient jump of any function f = (Cd)Tb ∈ G1,ε
h with

d ∈ Rn can be bounded by

‖[∇f ]‖2
L2(e) ≤ ε‖f‖2

L2(Ω) (4.15)

Proof. We use (4.11) and (4.12) and obtain

ε‖f‖2
L2(Ω) − ‖[∇f ]‖2

L2(e) = (Cd)T (εM −Q)(Cd)

= dTCT (εM −Q)Cd

= dTdiag
(
λ1, . . . , λn

)
d

= λ1d2
1 + . . .+ λnd2

n ≥ 0,

where the last inequality holds because we only consider non-negative eigenvalues

λi.

A further estimation of the gradient jump is possible. Let λmax(M) denote the

maximal eigenvalue of the mass matrix M . Since M is symmetric it holds that

xTMx ≤ xT (λmax(M) · I)x = λmax(M)‖x‖2
2 ∀x ∈ R|I|, (4.16)

if the entries of M are bounded. Recalling

‖f‖2
L2(Ω) = (Cd)TM(Cd),

it follows that

‖f‖2
L2(Ω) ≤ λmax(M)‖Cd‖2

2.

This bound is mesh-size dependent, as the eigenvalue λmax(M) depends on h.

The space G1,ε
h based on B1 does not necessarily contain the trivially smooth

isogeometric functions bki with

∇bki |e = ~0.

We will refer to these functions as off-interface basis functions. Since they are

constantly zero across the interface e, their gradient jumps across e are zero as

well. However, their coefficient vectors with respect to the basis {bi : ı ∈ I},
which are the canonical unit vectors in R|I|, are not necessarily eigenvectors of

εM − Q. As we shall see in Section 4.4, the functions in G1,ε
h do not possess the

same approximation power as the full space of isogeometric functions.
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4.3 Results for B2

We study another bilinear form, which is designed to compensate the drawbacks of

the first approach, in order to ensure the existence of trivially smooth functions in

the resulting space of approximately smooth isogeometric functions. However, in

this case we cannot expect to obtain an estimate of ‖[∇f ]‖L2(e) that is independent

of the mesh size.

4.3.1 Construction of approximately smooth functions

The modified space Ĝ1,ε
h is constructed analogously to the procedure described in

Section 4.2.1. Recall that B2(f, f) can equivalently be written as

B2(f, f) = uTQu

for

f = uTb ∈ Vh, u ∈ R|I|.

As explained before, the matrix Q is symmetric positive semi-definite. We choose

a positive value ε. Let λ̂1 ≤ . . . ≤ λ̂n̂ ≤ ε be the eigenvalues of Q that are bounded

by ε and let ĉ1, . . . , ĉn̂ be the corresponding orthonormalized eigenvectors, n̂ ≤ |I|.
We define

Ĝ1,ε
h := span

{∑
i∈I

ĉki bi : k = 1, . . . , n̂

}
. (4.17)

4.3.2 Properties of the function space

Again, by construction, Ĝ1,ε
h is a linear space. Moreover, all trivially smooth

isogeometric functions f , i.e., the off-interface basis functions as well as constant

and linear functions (which are contained in the space of isogeometric functions,

due to use of the isoparametric principle), fulfill

B(f, f) = 0.

Since the matrix Q is symmetric positive semi-definite, this implies that the coeffi-

cient vector of f is an element of the kernel of Q. Consequently, the corresponding
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coefficient vector is an eigenvector to the eigenvalue 0 of Q. Since we set ε > 0,

all elements in the kernel will also be elements of Ĝ1,ε
h . This is independent of the

mesh size h. As we will see, the inclusion of these functions in Ĝ1,ε
h is important

to achieve optimal convergence.

Subsequently, we bound the gradient jump of functions in Ĝ1,ε
h . We denote

by Ĉ ∈ R|I|×n̂ the matrix containing the eigenvectors ĉ1, . . . , ĉn̂ of Q as column

vectors. Let f ∈ Ĝ1,ε
h , i.e. we set

f(x) = (Ĉd)Tb(x) (4.18)

with d ∈ Rn.

Theorem 2. Let the knot vectors that define the B-splines {βi}i∈I be quasi-

uniform. Then all functions f ∈ Ĝ1,ε
h satisfy

‖[∇f ]‖2
L2(e) ≤ ε

C

h2
‖f‖2

L2(Ω) (4.19)

for a constant C that depends on the maximal spline degree p and the geometry

mapping G, but not on the maximal mesh size h.

Proof. Let f = (Ĉd)Tb ∈ G1,ε
h as denoted above. Then we have

‖[∇f ]‖2
L2(e) = (Ĉd)TQ(Ĉd) = dT Ĉ

T
QĈd

= dTdiag
(
λ̂1, . . . , λ̂n̂

)
d

= λ̂1d2
1 + . . .+ λ̂n̂d2

n̂

≤ ε
n̂∑
i=1

d2
i = ε‖d‖2

2 = ε‖Ĉd‖2
2,

where the last equality holds because Ĉ is an orthogonal matrix.

Next, we use the stability of tensor-product B-spline bases {βi}i∈I [55] with

stability constant D2
p, where p = max{p1, p2}, and get

‖[∇f ]‖2
L2(e) ≤ ε‖Ĉd‖2

2 ≤ εD4
p

1

h2

∥∥∥∥∥∑
i∈I

(Ĉd)iβi

∥∥∥∥∥
2

L2(Ω̂)

. (4.20)
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We rewrite βi in terms of the push-forward bi ◦G and obtain

‖[∇f ]‖2
L2(e) ≤ εD4

p

1

h2

∥∥∥∥∥∑
i∈I

(Ĉd)i (bi ◦G)

∥∥∥∥∥
2

L2(Ω̂)

, (4.21)

which again can be rewritten and summarized as

‖[∇f ]‖2
L2(e) ≤ εD4

p

1

h2

∥∥∥∥∥
(∑

i∈I

(Ĉd)ibi

)
◦G

∥∥∥∥∥
2

L2(Ω̂)

= εD4
p

1

h2
‖f ◦G‖2

L2(Ω̂) .

(4.22)

Now we transform the integral
∫

Ω̂
(f ◦G)2 on Ω̂ to an integral on Ω, which yields

‖[∇f ]‖2
L2(e) ≤ εD4

p

1

h2
‖ det∇(G)−1‖L∞(Ω)‖f‖2

L2(Ω). (4.23)

Finally we set

C(p,G) = D4
p ·
∥∥det∇(G)−1

∥∥
L∞(Ω)

.

This concludes the proof.

This result resembles standard inverse inequalities for isogeometric functions,

which can be found in [3], apart from the factor ε, which is chosen in advance, and

the power of h. For a sufficiently smooth function f , standard inverse inequalities

lead to an estimate of the form

‖∇f‖2
L2(e) ≤

C

h3
‖f‖2

L2(Ωi),

where C is a positive constant and Ωi is one of the two patches adjacent to e. If

we choose ε ∈ O(h2) for the construction of Ĝ1,ε
h , we can eliminate the mesh-size

dependence in the bound of the gradient jump. However, smaller values of ε lead

to fewer functions in G1,ε
h , which we will discuss in the following section.

4.4 Numerical examples

We consider least squares approximation, the Poisson problem as well as the bi-

harmonic equation on a two-patch domain. In this context we are interested in

the approximation power of G1,ε
h and Ĝ1,ε

h . Furthermore we will study the number

of interface basis functions under uniform h-refinement.
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4.4.1 Approximation power

Second order problems – such as the Poisson equation – require weakly differen-

tiable ansatz functions on the whole domain. Thus, in an isogeometric discretiza-

tion, smoothness of a higher order than C0-smoothness is not required. However,

we include these examples to illustrate that we maintain full approximation power

in these cases, although we use less basis functions than in the standard tensor-

product basis. Solving the biharmonic equation on the contrary requires second

order differentiable test functions. Our examples suggest that the functions in Ĝ1,ε
h

are sufficiently smooth.

Throughout the remainder of this section, all errors are measured patch-wisely

and then summed up, e.g. we refer to

‖fapprox|Ω1 − fexact|Ω1‖H1(Ω1) + ‖fapprox|Ω2 − fexact|Ω2‖H1(Ω2)

as the H1 error and to

‖fapprox|Ω1 − fexact|Ω1‖H2(Ω1) + ‖fapprox|Ω2 − fexact|Ω2‖H2(Ω2)

as the H2 error of fapprox. The patch-wise splitting is not necessary for the L2

error, as G1,ε
h ⊆ L2(Ω) and Ĝ1,ε

h ⊆ L2(Ω).

L2 approximation

We start with an example that identifies the limitations of the space G1,ε
h , which

is based on the bilinear form B1. Figure 4.2 shows the function

fexact(x, y) = 3xy exp(−x) sin(πy), (4.24)

which we approximate on a two-patch domain by functions in G1,ε
h . The domain

coincides with the one shown in Figure 4.1. We solve the constrained least squares

fitting problem

min
f∈G1,ε

h

‖f − fexact‖2
L2(Ω).

The parameter ε was set to 0.5. The relative L2 and H1 errors are depicted in

the left plot of Figure 4.3. After some refinement steps, no significant reduction of
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Figure 4.2: Bicubically parameterized domain (see Fig. 4.1) and transparent plot

of the exact solution 3xy exp(−x) sin(πy).

the error is achieved. Considering the distribution of the error values in the last

refinement step, shown in Figure 4.3, right, we note that the largest errors occur

close to the interface and in the back corners. This is a possible indicator that the

corresponding corner basis functions are not present in G1,ε
h .

Consequently, we consider only the space Ĝ1,ε
h based on the bilinear form B2.

The following experiment shows that - in contrast to the previous approach - the

functions in Ĝ1,ε
h maintain the full approximation power.

Again, we choose ε = 0.5 and approximate the same function (4.24) on the

same domain as before. We use a uniform h-refinement strategy. The relative L2

and H1 error values and the respective convergence rates are shown in Figure 4.4,

left and right, respectively. A comparison with the reference slopes shows that the

functions in Ĝ1,ε
h maintain the optimal convergence rates of p+ 1 and p for the L2

and the H1 error, respectively.

At the finest level of refinement we used 8,840 (9,111) basis functions of degree

3 (4) with mesh size 2−6. Note that this number of basis functions is slightly less

than the number of original tensor-product B-splines, which is 8,978 (9,248) for

degree 3 (4).

The bottom plot in Figure 4.4 depicts the solution using 8,840 basis functions

of degree 3 as a patch-wise plot with added flat shading. These effects highlight

the smoothness of the solution across the curved interface.
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Figure 4.3: Least squares approximation with functions in G1,ε
h with ε = 0.5. Left:

relative L2 and H1 error for the approximate solution of degree 3. Right: L2 error

values at the finest discretization step (scaled by factor 100).

Poisson problem

Solving the Poisson problem leads to very similar results. It is given by

Find u :

−∆u = f on Ω

u = 0 on ∂Ω ,

see problem (3.1). We solve this problem by means of a continuous Galerkin

method, i.e., we solve the discretized weak form

find u ∈ Ĝ1,ε
h,0 such that

∫
Ω

∇u(x)∇v(x)dx =

∫
Ω

f(x)v(x)dx ∀v ∈ Ĝ1,ε
h,0,

(4.25)

where

Ĝ1,ε
h,0 = {u ∈ G1,ε

h : u|∂Ω = 0}.

The zero Dirichlet boundary conditions are imposed strongly in the test function

space. Again we set the threshold ε to 0.5. The exact solution is given by

u(x, y) = 40(0.25x+ 0.75− y)(−0.25x+ 1.25− y)

(−0.25x+ 0.25− y)(0.25x− 0.25− y) sin(0.5πx).
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Figure 4.4: Least squares approximation with functions in Ĝ1,ε
h with ε = 0.5.

Relative L2 (top left) and H1 (top right) error of the solution to the fitting problem

on the bi-cubic domain, see Figure 4.1. Bottom: Patch-wise representation of the

solution with 8,840 basis functions of degree three for ε = 0.5 with flat shading.
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Figure 4.5: Poisson problem (4.25). Left: Domain Ω and its control net. Middle:

Approximate solution with 2,048 basis functions of degree 2. Right: Patch-wise

plot of the solution with flat shading.

The physical domain Ω consists of two patches with a curved interface, see Figure

4.5, left. It is biquadratically parameterized. Figure 4.5, middle, shows its solution

for 2,048 basis functions of degree 2 with element size 2−5, the patch-wise plot of

the solution, right, emphasizes the location of the interface. The flat shading in

the right plot shows that the solution is smooth in this area.

The behavior of the relative L2 and the H1 error are shown in Figure 4.6, left

and right, respectively. We see that in both cases and for the tested degrees two,

three and four of the test functions we realize optimal convergence rates. This is

consistent with the L2 approximation results.

Biharmonic equation

The examples shown previously did not require C1-smooth basis functions. Conse-

quently, the approximately smooth functions we presented did not exhibit any ad-

vantage over standard C0-smooth isogeometric functions which can be constructed

by identifying the corresponding degrees of freedom along the interface, except for

the fact that we used slightly less basis functions. We now consider a fourth-order

equation, where the bilinear form governing the weak formulation cannot be eval-

uated for only C0-smooth functions and thus, smoother functions are mandatory.

The following examples demonstrate that - depending on the value of ε that con-
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Figure 4.6: Poisson problem (4.25). Relative L2 (left) and H1 error (right) of the

approximate solution with basis functions of different degrees in Ĝ1,ε
h,0 for ε = 0.5.

trols the magnitude of the jump - approximately smooth functions are suitable

for solving such a higher-order problem and even to maintain full approximation

power in the L2, H1 and H2 error.

We consider the discretized weak form:

Find u ∈ Ĝ1,ε
h,0 such that

∫
Ω

∆u(x)∆v(x)d(x) =

∫
Ω

f(x)v(x) ∀v ∈ Ĝ1,ε
h,0,

(4.26)

where

Ĝ1,ε
h,0 = {u ∈ G1,ε

h : u|∂Ω = (∇u · n)|∂Ω = 0},

of the biharmonic equation

∆2u = f on Ω

u =
∂u

∂n
= 0 on ∂Ω.

(4.27)

Again, we impose the boundary conditions strongly in the test function space and

solve (4.26) by means of the Galerkin method. The right-hand side f is obtained

from the exact solution (1− cos(2πx))(1− cos(2πy)). The domain Ω is a square,

which is split into two patches with a curved interface, see Figure 4.7, left. Figure



4.4. NUMERICAL EXAMPLES 59

Figure 4.7: Biharmonic equation (4.26): Domain with its control net (left), ap-

proximate solution with 2.101 basis functions of degree four in Ĝ1,ε
h with ε = h2

(middle) and patch-wise plot of the approximate solution with flat shading (right).

4.7, middle, depicts the solution for 2101 basis functions of degree four and element

size h = 2−5 and ε = h2. The flat shading demonstrates the smoothness of the

solution across the interface in the patch-wise plot on the right.

We consider the decay of the relative error for different degrees of the basis

functions, starting with degree p = 3. The plots in Figure 4.8 show that the

optimal approximation order with respect to the L2 (top left), H1 (top right) and

H2 (bottom) norm is reached for ε = C · hk for k ≤ 2, but not for k = 3. This

effect is best visible in the L2 error.

The situation is slightly different for p = 4. Here, the optimal approximation

order with respect to the L2 (top left), H1 (top right) and H2 (bottom) norm is

reached for ε = C · hk for k = 2, 3, but neither for k ≤ 1 nor for k ≥ 4, see Figure

4.9. Finally, the optimal approximation order for p = 5 with respect to the L2 (top

left), H1 (top right) and H2 (bottom) norm is reached for ε = C · hk for k = 3,

but neither for k ≤ 2 nor for k ≥ 4, as shown in Figure 4.10.

On the one hand, a higher power of h and thus a smaller value of ε results

in smoother, but at the same time in fewer basis functions, hence in a loss of

approximation power. On the other hand, while choosing a larger value of ε

increases the dimension of Ĝ1,ε
h , the resulting discretizations are not smooth enough
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Figure 4.8: Biharmonic equation (4.26): Relative L2 (top left), H1 (top right) and

H2 (bottom) errors of the approximate solution for basis functions of degree three

in Ĝ1,ε
h,0 for four choices of ε.
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Figure 4.9: Biharmonic equation (4.26): Relative L2 (top left), H1 (top right) and

H2 (bottom) errors of the approximate solution for basis functions of degree four

in Ĝ1,ε
h,0 for four choices of ε.
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Figure 4.10: Biharmonic equation (4.26): Relative L2 (top left), H1 (top right)

and H2 (bottom) errors of the numeric solution for basis functions of degree five

in Ĝ1,ε
h,0 for three choices of ε.
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for solving higher order problems. We conjecture that ε = C · hp−2 is the optimal

choice.

4.4.2 Dimension of the space

We investigate the influence of ε on the number of interface basis functions, and

thus on the dimension of the space Ĝ1,ε
h . Note that the number of trivially smooth

basis functions is not affected by the choice of ε.

We cannot expect nested spaces, i.e., we cannot ensure that

Ĝ1,ε
h ⊆ Ĝ1,ε

h
2

.

Nevertheless, the number of interface basis functions grows as h is decreased.

Figure 4.11 shows the number of interface basis functions for different degrees

and different choices of ε. For ε = C · hk with k ≤ p− 2, the number of interface

basis functions grows linearly under h-refinement for all degrees. A larger choice

of k, however, results in significantly fewer functions. This effect is clearly visible

for ε = h4 and the degrees three, four, five and six. The kink in the green curve,

corresponding to ε = h3, is a bit smaller. The results are consistent with the

convergence rates for different degrees of test functions, which we discussed earlier.

4.5 Summary

We proposed a concept of constructing spaces G1,ε
h and Ĝ1,ε

h of approximately C1-

smooth isogeometric functions on planar multi-patch domains which is based on

selecting eigenvalues and corresponding eigenvectors of the matrix representation

of a suitable bilinear form. The resulting functions will have a non-zero gradient

jump. We established the spaces in such a way that we can bound the gradient

jump of the contained functions by construction.

We studied two different bilinear forms. The first bilinear form led to a bound

on the gradient jump of the form

‖[∇f ]‖2
L2(e) ≤ ε‖f‖2

L2(Ω),
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Figure 4.11: Number of interface basis functions under uniform h-refinement on

the domain shown in Figure 4.1. Basis functions of degree three (top left), four

(top right), five (bottom left) and six (bottom right) for various mesh-dependent

choices of ε.
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where ε is to be chosen in advance, in particular the bound is h-independent.

On the other hand, the space constructed on basis of this bilinear form does

not necessarily contain trivially smooth functions, which led to a decrease in the

approximation order.

The function space Ĝ1,ε
h based on the second bilinear form, which was designed

to overcome the former drawbacks, contained all trivially smooth isogeometric

functions and the gradient jump was bounded by

‖[∇f ]‖2
L2(e) ≤ ε

C(p,G)

h2
‖f‖2

L2(Ω).

Numerical experiments suggested that for second-order problems the latter ap-

proach maintains the optimal approximation order even for constant choices of ε

and that the functions are sufficiently smooth to solve the biharmonic equation.

The convergence of the approximate solution was influenced by the choice of ε.

Depending on the degree of the basis functions, ε had to be chosen as a suitable

power of the mesh size h in order achieve convergence of the solution to the bi-

harmonic problem. On the other hand the dimension of G1,ε
h decreases as ε does.

If too few functions remain in G1,ε
h we lose the optimal approximation properties.

Thus, the choice of ε needs to balance the number of functions in G1,ε
h and their

smoothness.

In future work one may focus on developing a theoretical background for the

results concerning the approximation power of functions in G1,ε
h . Also, one may

look into the dimension of G1,ε
h and into bounding the number of non-trivial basis

functions from below.
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Chapter 5

Approximate Geometric Smooth-

ness for Surface Reconstruction

In the last two chapters we covered topics related to approximate smoothness for

numerical simulation. In this chapter, the focus of our attention will be shifted

to surface reconstruction, more precisely to spline approximation. That means

that we no longer deal with an isogeometric setting on a planar physical domain.

Instead, from now on our considerations are restricted to tensor-product B-spline

surfaces, defined on a parameter domain. To emphasize the changed setting, in

this chapter we will again slightly modify the notation.

We aim at constructing a spline surface with minimal distance to given data

points. If the spline basis is already known, the surface is determined by its control-

points. Thus, our problem consists in finding (in our case) control points in R3

such that the distance between the resulting spline surface and the given data is

minimal. We formulate the problem as an optimization problem, which combines

minimizing point and normal errors with the use of norm-like functions, thereby

generalizing the standard least squares fitting.

Using normal data helps us to connect the content of this chapter with the

general topic of approximate smoothness on multi-patch domains. Assume the sur-

face patch we want to construct is surrounded by neighboring patches. With the

method we propose we can approximate point data on the whole patch. Simulta-

67
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neously, we can measure normal data along the boundary edges of the neighboring

patches and encourage the normals of the patch to be constructed to approxi-

mate them. This process enhances approximate geometric continuity between the

neighboring surface patches.

The remainder of this chapter is organized as follows: In Section 5.1, we

state the problem, introduce the used notation, which will differ slightly from

the one presented in Chapters 3 and 4 and present our approach. Using uniform

h-refinement, where h is the mesh size of the underlying knot span grid, we com-

pute a series of solutions to our problem. In Section 5.2 we show that such a

series of solutions exists and that it realizes the optimal approximation order for

a suitable choice of the weight of the normal term, depending on h. In Section 5.3

we present numerical examples both with artificial and industrial data. Section

5.4 summarizes this chapter.

5.1 Simultaneous approximation of point and

normal data

Consider the data depicted in Figure 5.1 (bottom right), which shows a part of a

turbine and a turbine blade model. This point cloud is to be approximated by a

spline surface. The parameter values shown on top are generated by a standard

parameterization method [21] for meshes, applied to a triangulation of the data.

In order to ensure smooth connections to the neighboring surfaces, we need to

enforce approximate G1-smoothness by additionally approximating the prescribed

normal data along the red boundaries. We do not consider normals along the re-

maining two boundaries, since the associated neighboring surface patches (blends)

are created in a subsequent step.

We realize the fillet surface construction by performing a minimization of the

objective function

F (s) =
D∑
j=1

ν(|xs(tj)− fj|) + γ

K∑
k=1

ν(|Nxs(t̂k)− nk|) → min . (5.1)

In detail,



5.1. SIMULTANEOUS APPROXIMATIONOF POINT ANDNORMAL DATA69

Figure 5.1: Turbine component (top left) and point cloud: Parametric (top right)

and measured physical data (bottom right) of the fillet belonging the central part

of the marked area of the turbine blade (bottom left).
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• | · | denotes the standard Euclidean norm, ν : R+ → R+ ∈ C2 is a norm-like

function1 as described by [2],

• the approximating spline surface

xs(t) =
n∑
i=1

ciβi(t), t ∈ [0, 1]2,

which represents the fillet, depends on the vector

s = (cT1 , . . . , c
T
n ) = (c1

1, c
2
1, c

3
1, c

1
2, . . . , c

1
n, c

2
n, c

3
n)

of control points, which are multiplied with either tensor-product B-splines

or THB-splines [43] βi,

• the surface approximates the given points fj at parameter values tj ∈ [0, 1]2,

and the unit normal vectors nk at parameter values t̂k,

• the operator N transforms the surface into the associated field of unit normal

vectors, and

• the non-negative weight γ controls the relative influence of points and nor-

mals.

Note that in this chapter, like in Chapter 4, we do not use superscripts for basis

functions or control points to refer to a specific single patch, since formally, we do

not consider a multi-patch domain. Our problem formulation is given on a single

patch. Furthermore, the former index set I and the patch-wise index sets I1, I2

are replaced by the set {1, . . . , n}.
In the example shown in Figure 5.1, the distribution of the parameter values

tj is often quite non-uniform, and the values t̂k are located on the patch boundary.

Due to the presence of the unit normals and for general norm-like functions,

the minimization of (5.1) leads to a non-linear optimization problem. A necessary

condition for s to be a minimizer of (5.1) is ∇F (s) = 0. We solve this equation

1In particular, choosing ν(x) = x2 results in a standard least squares fitting problem. Please

note that we consider a more restricted class of norm-like functions than in the original paper,

see the assumptions (5.4) at the end of this section.
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approximately by a Gauss-Newton-type method, i.e. a simplified Gauss-Newton

method, where in the `-th iteration we solve the linear system

HF (s`)∆s = −∇F (s`) (5.2)

and update the current solution s` via s`+1 = s` + (∆s)T . The solution of the

standard least squares point fitting problem is used as start value. More precisely,

we approximate the Hessian of the objective function by

HF (s) =
D∑
j=1

ω(|Rj|)∇RT
j (s)∇Rj(s) +

K∑
k=1

ω(|R̂k|)∇R̂T
k (s)∇R̂k(s),

where Rj = xs(tj)− fj and R̂k = Nxs(t̂k)−nk are the point and normal residuals,

respectively, and

ω(x) = ν ′(x)/x, (5.3)

cf. [2]. The latter function is called the weight function associated with the norm-

like function ν. The exact computation of the Hessian is costly, therefore the

aforementioned approximation is chosen. In [2] it is shown that in the zero-residual

case this expression converges to the true Hessian with respect to the spectral norm.

Besides the obvious choice ν(x) = x2, it is potentially useful to consider

other types of norm-like functions, since they may enhance the performance of the

method in the presence of outliers or improve the approximation result. However,

for the analysis we restrict ourselves to norm-like functions that satisfy ν(0) = 0

and whose weight functions possess the following properties:

• They have a global lower bound ωmin, i.e., ω(x) ≥ ωmin holds for all x ∈ R+,

and

• they possess an upper bound ωmax(F ) on each interval [0, F ], i.e., ω(x) ≤
ωmax(F ) holds for all x ∈ [0, F ].

We will refer to these as norm-like functions with positive and partially bounded

weights. They satisfy

1

2
ωminx

2 ≤ ν(x) ≤ 1

2
ωmax(F )x2 on any interval [0, F ]. (5.4)

It has been shown that in the zero-residual case, the method (5.2) achieves local

quadratic convergence for this class of norm-like functions under certain technical

assumptions, see [2, Theorem 5].
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5.2 Existence of a solution and convergence

rates

In order to gain some insight into the behavior of the solution to the minimization

problem (5.1), we consider the continuous version

F̂ (s) = ‖ν(|xs − f |)‖L1 + γ‖ν(|Nxs −Nf |)‖L1 → min, (5.5)

where

f : [0, 1]2 → R3 (5.6)

is a given smooth surface that we want to approximate. We derived it by replacing

the sums with integrals.

It should be noted that the presence of L1 norms in (5.5) is caused by the use

of the norm-like function ν. In the simplest possible case ν(x) = x2 one obtains

F̂ (s) = ‖xs − f‖2
L2 + γ‖Nxs −Nf‖2

L2 .

In this section we restrict the exposition to spline surfaces xs defined by tensor-

product B-splines Bi of degree (p, p), which are defined over two quasi-uniform

open knot vectors Ξ = (Ξ1,Ξ2) on [0, 1]2. As usual we use h to denote the mesh

size, i.e., the maximum side length of the resulting elements.

We recall two basic facts from spline theory:

• Stability of a B-spline basis {Bi} ([16], Theorem 4.1; [55], Theorem 12.5):

There exists a constant 0 < Dp ≤ 2(p+ 1)9p such that

1

D2
p

|s|∞ ≤ ‖
∑
i

ciβi‖L∞ ≤ |s|∞. (5.7)

These inequalities are valid for splines with scalar coefficients. They can be

generalized to spline surfaces by defining

‖xs‖L∞ = max
t∈[0,1]2

|xs(t)|

and exploiting the equivalence

|v|∞ ≤ |v| ≤
√

3|v|∞,

of the Euclidean norm | · | and the maximum norm | · |∞ in R3.
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• Approximation power of splines with scalar coefficients [17]: There exist

quasi-interpolation operators ΠΞ that transform any given function φ ∈ Hp+1

into a spline function ΠΞφ. More precisely, the error satisfies

||φ− ΠΞφ||L2 ≤ C · hp+1||φ||Hp+1 , (5.8)

and

||φ− ΠΞφ||H1 ≤ C · hp||φ||Hp+1 , (5.9)

where the constant C does not depend on Ξ, h, or f , i.e., points are approx-

imated with order p + 1, while derivatives are approximated with order p.

The result carries over to splines with values in R3 by applying ΠΞ compo-

nentwise.

These observations will be used to derive a result about the existence of solutions

and the convergence rate as h tends to zero. We consider a regular surface f , see

(5.6), and a norm-like function ν satisfying ν(0) = 0 with positive and bounded

weight function, cf. (5.3) and (5.4).

Theorem 3. The problem (5.5) has a solution for all pairs Ξ of knot vectors. The

sequence of solutions realizes the optimal approximation order if γ = γ0h
2 for some

positive constant γ0.

Before proving Theorem 3 we state an auxiliary result.

Lemma 4. There exists constants CN = CN(f) and h0 = h0(f), which depend on

the given surface f , such that

‖NΠΞf −Nf‖L2 ≤ CNh
p

holds whenever h < h0, where ΠΞf is applied to the elements of f , i.e.

ΠΞf =

 ΠΞf
1

ΠΞf
2

ΠΞf
3

 .

The proof of this Lemma 4 follows from the approximation order of the deriva-

tives and the fact that the normal depends continuously on the derivatives, taking

the regularity of the parameterization into account. We present the details of this

proof in the appendix of this chapter.
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Proof of Theorem 3. First, we show that a solution exists for any pair of knot

vectors. We restrict the ‖·‖L∞- and the ‖·‖L2-norm to the spline space span{Bi|i ∈
Ih} which has finite dimension. Consequently, the two norms are equivalent, i.e.,

there exists a constant Cnorm such that

‖
∑
i∈Ih

ciβi‖L∞ ≤ Cnorm‖
∑
i∈Ih

ciβi‖L2 . (5.10)

We combine this observation with (5.7) and obtain

1

Cnorm

1

D2
p

|s∗|∞ ≤ ‖xs∗‖L2 = ‖xs∗ − f + f‖L2 ,

where s∗ is the solution of (5.5). Now using the triangle inequality, the first

inequality in (5.4) and the identity

‖ · ‖L2 =
√
‖(·)2‖L1

gives
1

Cnorm

1

D2
p

|s∗|∞ ≤
√

2

ωmin

‖ν(|xs∗ − f |)‖L1 + ‖f‖L2 . (5.11)

The L1 norm on the right-hand side is bounded by F̂ (s) for any choice of s. In

particular we may choose s as null vector and obtain

1

Cnorm

1

D2
p

|s∗|∞ ≤
√

2

ωmin

(‖ν(|f |)‖L1 + γ‖ν(|Nf |)‖L1) + ‖f‖L2 . (5.12)

Consequently, it suffices to consider the objective function (5.5) on the closed ball

with radius

CnormD
2
p

(√
2

ωmin

(‖ν(|f |)‖L1 + γ‖ν(|Nf |)‖L1) + ‖f‖L2

)
,

which is a compact domain. The continuity of the objective function thus ensures

the existence of the minimum.

In order to establish the optimality of the approximation order, we consider a

sequence of knot pairs Ξ = Ξh with decreasing element size h and show that the

point and normal errors of the solutions to (5.5) satisfy√
‖ν(|xh − f |)‖L1 ≤ C ′hp+1 and

√
‖ν(|Nxh −Nf |)‖L1 ≤ C ′hp (5.13)
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for some constant C ′, which is independent of h.

As

‖ΠΞf − f‖L∞([0,1]2)

is bounded and since

|(ΠΞf − f)(t)| ≤ ‖ΠΞf − f‖L∞([0,1]2) for almost all t ∈ [0, 1]2

we choose

F = max{2, ‖ΠΞf − f‖L∞([0,1]2)}

and obtain

‖ν(|ΠΞf − f |)‖L1 + γ0h
2‖ν(|NΠΞf −Nf |)‖L1

≤

∥∥∥∥∥
√
ωmax(F )

2
|ΠΞf − f |

∥∥∥∥∥
2

L2

+ γ0h
2

∥∥∥∥∥
√
ωmax(F )

2
|NΠΞf −Nf |

∥∥∥∥∥
2

L2

.

Thus, the value of objective function at the coefficients of the surfaces ΠΞf has

the upper bound
ωmax(F )

2
(C2 + γ0C

2
N)h2p+2,

where the constants C and CN are taken from (5.8) and Lemma 4, respectively.

This implies that the solution of (5.5) satisfies (5.13) with

C ′ = max


√
ωmax(F )

2
(C2 + γ0C2

N),

√
ωmax(F )

2

C2 + γ0C2
N

γ0

 .

This result is equivalent to the simple observation that – under a suitable

regularity assumption – the unit normals possess the same approximation order

as the derivatives. It carries over to the considered class of norm-like functions,

which satisfy (5.4) and ν(0) = 0.

It should be noted that the choice of γ, which is described in the above theorem,

is similar to the weights that appear in the jump and average terms used in the

discontinous Galerkin discretization of partial differential equations, cf. [57].
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5.3 Numerical experiments

This section has three parts. First, we verify the theoretical results of the previous

section by considering synthetic data sets. Second, we apply the fitting technique

to the industrial data set representing the fillet surface. Finally, we explore the

effects of using norm-like functions.

5.3.1 Least-squares fitting: synthetic data

We demonstrate the theoretical findings concerning the convergence rates by ap-

plying the fitting procedure with the trivial norm-like function ν(x) = x2 to two

synthetic data sets. First, we generated point and normal data by uniformly sam-

pling 104 points and normals from the graph of the trigonometric curve cos(20t),

t ∈ [0, 1]. Second we consider another data set obtained by evaluating 2012 points

and normals on a uniform grid in the domain of the ellipsoidal patch

(t1, t2) 7→


3
2
· cos(π

3
t1 − π

6
) · cos(π

2
t2 + 5π

4
)

4
5
· cos(π

3
t1 − π

6
) · sin(π

2
t2 + 5π

4
)

6
5
· sin(π

3
t1 − π

6
)

 , t ∈ [0, 1]2, (5.14)

see Figure 5.2, highlighted patch.

We computed the approximation result by using the Gauss-Newton method

described in Section 5.1. The iterative procedure was terminated when the gradient

of the objective function satisfied |∇F (s`)| ≤ 10−8 or when the iteration count

reached 500 (but this was never the case for the two synthetic data sets). The basis

functions βi were chosen as (bi-) cubic (tensor-product) B-splines. We consider

uniform open knot vectors with mesh size h varying between 1 and 2−8 or 2−5 for

curves and surfaces, respectively.

Figures 5.3 and 5.4 report the resulting root of the sum of squared errors with

respect to the Euclidean norm for γ = hk, k = 0, 1, 2, 3 and for γ = 0. Among

the considered choices of the weight γ, the optimal rates of convergence (4 for the

point data and simultaneously 3 for the normals) are achieved for γ = h2, γ = h3

and for γ = 0. The first case is covered by the theoretical results in the previous

section, while the other ones confirm that standard L2 approximation also provides
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Figure 5.2: One- (left) and two-dimensional (right) synthetic data for the numerical

tests.

the optimal rate of convergence of the derivatives. Consequently, using the normal

vectors does not provide any advantages for synthetic data. However, the example

in the next section will demonstrate the benefits for an industrial application.

Figures 5.5 and 5.6 demonstrate the influence of the constant γ0. It can be

seen that the fitting result is fairly robust with respect to variations of this weight.

Note that the effects of changing γ0 are not invariant under scaling. This issue can

be resolved by performing a suitable scaling of the data.

5.3.2 Least-squares fitting: industrial data

Next we apply the fitting procedure to the fillet data shown in Figure 5.1, which

consists of 3,280 point and 214 normal samples. The normal data is available only

at the top and the bottom of the fillet, in order to ensure a smooth connection

to the adjacent patches. First we consider tensor-product discretizations with

varying mesh size h (up to 1,225 control points) obtained by dyadic refinement.

We regularized the objective function by introducing a quadratic surface energy

with weight λ = 10−5, see [43] for details. This also has a fairing effect.

Figure 5.7, light and dark blue curves, visualizes the resulting sum of squared

errors with respect to the Euclidean norm for γ = 10−3h2 and for γ = 0 (without

normals). It can be seen that using the normal data is essential, since the nor-
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Figure 5.3: Synthetic curve data: Point (left) and normal (right) error for various

choices of weight γ and mesh size h.
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Figure 5.4: Synthetic surface data: Point (left) and normal (right) error for various

choices of weight γ and mesh size h.
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Figure 5.5: Synthetic curve data: Point (left) and normal (right) error for various

choices of the constant γ0 where γ = γ0h
2.
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Figure 5.6: Synthetic surface data: Point (left) and normal (right) error for various

choices of the constant γ0 where γ = γ0h
2.
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mals do not converge for γ = 0. Clearly, one cannot expect to achieve the same

convergence rate as for the synthetic data, due to measurement errors. Also, the

normals were sampled from neighboring patches, not from the fillet.

Figure 5.8 depicts the resulting fillet patches with (right) and without (left)

approximating normal vectors for the finest tensor-product spline discretization.

We added reflection lines to visualize the surface quality. On the one hand, the

use of normal data (right) clearly improves the G1 smoothness across the patch

boundaries, since the reflection lines are continuous. This is especially visible in the

marked areas, which are shown again in Figure 5.9, where there are discontinuities

in the reflection lines of the left plot and smoother transitions in the reflection

lines of the right plot. However, even at the finest discretization with 1,225 control

points, the normal error was still relatively large (sum of squared errors 6.1 · 10−7

and maximum angle 1.65 · 10−2 degrees for γ = 10−3h2).

A further improvement – even when using a much smaller number of degrees

of freedom – can be obtained by employing THB-spline discretizations instead of

tensor-product splines, similar to the techniques reported by [25, 43]. We use the

absolute threshold refinement strategy with ε = 10−6 and compare the results

obtained without (left) and with (right) using normal data in Figure 5.10. Both

surfaces have acceptable quality, but the use of normal data again improves the

G1 smoothness (see close-up views). The leftmost reflection line is discontinuous

without normal information.

Table 5.1 reports the resulting errors for the two THB-spline approximations.

In particular, while the use of normal data does not compromise the point error, it

significantly improves the approximate G1 smoothness. Here, h refers to the mesh

size of the finest discretization level.

The finest THB-spline discretization with 841 control points leads to a signifi-

cantly smaller normal error than the finest uniform discretization (sum of squared

errors norm 2.01 · 10−8 and maximum angle 3.24 · 10−3 degrees for γ = 10−3h2).

The sum of squared errors with respect to the Euclidean norm for γ = 10−3h2

and for γ = 0 (without normals) for different numbers of control points is shown in

Figure 5.7, dark and light red curves. Here, again, the effect of reaching a smaller

normal error with less control points is evident.
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Clearly, we obtain different THB meshes for γ = 0 and γ = 10−3h2, which are

visualized in Figure 5.11. The two surfaces have 556 and 841 control points. The

use of the normal data led to additional refinement near the boundaries.

5.3.3 Norm-like functions

Now we consider the influence of different choices of ν while neglecting the normal

data approximation term, using the data previously introduced (Figure 5.1 and

5.2, right). We artificially introduce outliers to the ellipsoidal patch values in

order to illustrate the effects of different alternatives of ν. More precisely, we set

the value of the third component of three of the 2012 samples to 1.5 instead of

1.02083, 1.02901 and 0.979487, respectively. Thus, the outliers have a distance of

0.64977, 0.65063 and 0.67656 from the original data points. We do not have further

information about the industrial data from Figure 5.1, but most likely there will

be some noise in the data.

Following [2], we select the norm-like functions

• ν1(x) = 1− exp(−η2x2),

• ν2(x) = x2, which corresponds to a standard least-squares fitting problem,

and

• ν3(x) = exp(η2x2)− 1.

The constant η was chosen as described in [2]. Minimizing the first and the third

function, which are motivated by the statistics literature, has been observed to

have a beneficial effect on outliers and on the maximum error, respectively.

The latter two functions are norm-like functions with positive and partially

bounded weights, since they fulfill the assumptions specified in Section 5.1. In

contrast, the weight function associated with ν1(x) is not globally bounded from

below. One may replace the weight by a constant for all arguments exceeding some

threshold, in order to satisfy the assumptions.

For the results in Table 5.2 we used a tensor-product B-spline discretization

with B-splines of degree (3,3) and mesh size h = 0.03125, as in the previous

experiments, and we set γ = 0. As expected, the `1-error is minimal when using
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without normals with normals

γ = 0, 3 · 556 dofs γ = 10−3h2, 3 · 841 dofs∑
j ‖xs,h(tj)− fj‖22 8.15 · 10−10 7.48 · 10−10∑

k ‖Nxs,h(t̂k)− nk‖22 1.32 · 10−2 2.01 · 10−8

maximum angle between normals in degree 0.94 3.24 · 10−3

Table 5.1: Error values of the THB-spline approximations.

Ellipsoid data with outliers Fillet data

ν1(x) ν2(x) ν3(x) ν1(x) ν2(x) ν3(x)∑
j ‖Rj‖2 6.1 7.17 7.86 0.001242 0.001242 0.001248√∑
j ‖Rj‖22 1.1 1.0942 1.095 2.42 · 10−5 2.42 · 10−5 2.43 · 10−5

maxj ‖Rj‖2 0.66 0.65 0.64 1.514 · 10−6 1.514 · 10−6 1.513 · 10−6

Table 5.2: Error values in different `p norms for approximations of the ellipsoidal

patch and fillet data.

ν1 and an analogous outcome is visible for the other two norms. Note that the

differences between the error values are more distinct for the ellipsoidal patch data

than for the fillet data set which is due to the presence of very few strong outliers.

The influence of the choice of ν is not visible for the fillet data where the error

appears to have a more uniform distribution.

5.4 Summary

We considered the simultaneous approximation of point and normal data using

norm-like functions by tensor-product B-spline surfaces. This leads to a non-linear

optimization problem, which has been solved by a Gauss-Newton-type technique,

based on the earlier results reported by [2]. We showed that for all pairs of knot

vectors of the tensor-product B-splines, a solution to the minimization problem

exists and that for a suitable choice of the weight of the normal data term the

series of solution realizes the optimal approximation order.

We used an industrial data set to illustrate the advantages of fitting point and

normal data simultaneously. In this context we combined our approach with the

mathematical technology of truncated hierarchical B-splines (THB-splines), which
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provided again a significant improvement of the fitting results. As observed in our

experiments, the use of normal information helps greatly to maintain approximate

G1 smoothness across patch boundaries.

5.5 Appendix: Proof of Lemma 4.

For p > 3
2

and for sufficiently small element size, the derivatives of given surface f

and of its spline approximation ΠΞf satisfy

‖∂1f‖L∞ ≤M, ‖∂2f‖L∞ ≤M, (5.15)

‖∂1ΠΞf‖L∞ ≤M, ‖∂2ΠΞf‖L∞ ≤M, (5.16)

|∂1f(t)× ∂2f(t)| ≥ m, |∂1ΠΞf(t)× ∂2ΠΞf(t)| ≥ m∀t ∈ [0, 1]2 (5.17)

for some constants M,m > 0, see [1]. Note that the latter two inequalities are

induced by the regularity assumption for the surface f .

We consider the difference of the unit normals,∥∥∥∥ ∂1f × ∂2f

|∂1f × ∂2f |
− ∂1ΠΞf × ∂2ΠΞf

|∂1ΠΞf × ∂2ΠΞf |

∥∥∥∥
L2

. (5.18)

The subtrahend of the difference can be rewritten as(
|∂1ΠΞf×∂2ΠΞf |2
|∂1f×∂2f | ∂1f + |∂1ΠΞf × ∂2ΠΞf |∂1ΠΞf − |∂1ΠΞf×∂2ΠΞf |2

|∂1f×∂2f | ∂1f
)
× ∂2f

|∂1ΠΞf × ∂2ΠΞf |2
+(

|∂1ΠΞf×∂2ΠΞf |2
|∂1f×∂2f | ∂1f + |∂1ΠΞf × ∂2ΠΞf |∂1ΠΞf − |∂1ΠΞf×∂2ΠΞf |2

|∂1f×∂2f | ∂1f
)
× ∂2ΠΞf

|∂1ΠΞf × ∂2ΠΞf |2
−(

|∂1ΠΞf×∂2ΠΞf |2
|∂1f×∂2f | ∂1f + |∂1ΠΞf × ∂2ΠΞf |∂1ΠΞf − |∂1ΠΞf×∂2ΠΞf |2

|∂1f×∂2f | ∂1f
)
× ∂2f

|∂1ΠΞf × ∂2ΠΞf |2

After substituting the rewritten subtrahend into (5.18), we expand the cross prod-

uct and use the triangle inequality to expand the result into four terms.

The first term ∥∥∥∥ ∂1f × ∂2f

|∂1f × ∂2f |
− ∂1f × ∂2f

|∂1f × ∂2f |

∥∥∥∥
L2

is equal to zero. The second term satisfies∥∥∥∥ 1

|∂1f × ∂2f |
(∂1f × (∂2ΠΞf − ∂2f))

∥∥∥∥
L2

≤ 1

m
·M · C · hp · ‖f‖Hp+1 .
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The third term takes the form∥∥∥∥(|∂1ΠΞf × ∂2ΠΞf | |∂1f × ∂2f |∂1ΠΞf − |∂1ΠΞf × ∂2ΠΞf |2∂1f)× ∂2f

|∂1ΠΞf × ∂2ΠΞf |2|∂1f × ∂2f |

∥∥∥∥
L2

.

The first factor of the numerator can be rewritten as

|∂1ΠΞf × ∂2ΠΞf | · |∂1f × ∂2f |∂1ΠΞf − |∂1ΠΞf × ∂2ΠΞf |2∂1f

+ |∂1ΠΞf × ∂2ΠΞf | · |∂1f × ∂2f |∂1f − |∂1ΠΞf × ∂2ΠΞf | · |∂1f × ∂2f |∂1f.

This helps us to obtain an upper bound for the third term,

M

m
‖∂1ΠΞf − ∂1f‖L2 +

M2

m2
‖(∂1f × ∂2f)− (∂1ΠΞf × ∂2ΠΞf)‖L2 .

Using the properties (5.9) of the spline projector confirms that this can be bounded

by
M

m
C · hp · ‖f‖Hp+1 + 4

M2

m
C · hp · ‖f‖Hp+1 ,

where we used the observation that

‖(∂1f × ∂2f)− (∂1ΠΞf − ∂2ΠΞf)‖L2

= ‖(∂1f × ∂2f)− ((∂1f + ∂1ΠΞf − ∂1f)× (∂2f + ∂2ΠΞf − ∂2f)) ‖L2

= ‖(∂1f × ∂2f)− (∂1f × ∂2f)− ((∂1ΠΞf − ∂1f)× ∂2f)

− (∂1f × (∂2ΠΞf − ∂2f))− ((∂1ΠΞf − ∂1f)× (∂2ΠΞf − ∂2f)) ‖L2

≤M‖∂1ΠΞf − ∂1f‖L2 +M‖∂2ΠΞf − ∂2f‖L2 + 2M‖∂2ΠΞf − ∂2f‖L2 .

Finally, the expansion generates a fourth term, which is equal to∥∥∥∥∥∥
(
|∂1ΠΞf × ∂2ΠΞf |∂1ΠΞf − |∂1ΠΞf×∂2ΠΞf |2

|∂1f×∂2f | ∂1f
)
× (∂2ΠΞf − ∂2f)

|∂1ΠΞf × ∂2ΠΞf |2

∥∥∥∥∥∥
L2

and can be dealt with in the same way as for the third one.

Summing up, all four terms are bounded by terms of the form 1
4
CNh

p for a

suitable choice of the constant CN (which depends on f). This completes the

proof.
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Figure 5.7: Point (left) and normal (right) error for tensor-product (blue) and

THB-spline (red) approximations of the fillet data.

Figure 5.8: Tensor-product spline approximations of the fillet data without (left)

and with (right) using normal information.

Figure 5.9: The details shown in the marked areas from left to right.
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Figure 5.10: THB-spline approximations of the fillet data without (left) and with

(right) using normal information.

Figure 5.11: Control nets of the THB-spline surfaces approximating the fillet data

without (left) and with (right) using normal information.



Chapter 6

Conclusion and Future Work

In recent years, Isogeometric Analysis has proven to be a powerful tool for the

discretization of partial differential equations. The method relies on the geometry

mapping which parameterizes the computational domain over a simple parametric

domain by means of tensor-product spline functions. The test and ansatz func-

tions are given by isogeometric functions, which are defined as the push-forward

of the same B-splines that parameterized the geometry. As a consequence, no

approximation of the physical domain is required, hence the numerical simulation

is performed on the exact geometry at all times.

More complicated domains are represented as the union of several simpler

single patches. In the context of numerical simulation, special attention has to be

paid to the interfaces between neighboring patches. Smoothness of an isogeometric

function on a single patch is given naturally, but global smoothness of such a

function across patch interfaces does not come for free. This can be accomplished

in different ways. This thesis studied two methods concerning the coupling of

isogeometric functions on multi-patch domains.

Coupling techniques mainly can be categorized into two groups: The first

group works with test function spaces on the individual patches and encourages

smooth transitions by adapting the weak problem formulation, e.g. by adding

jump penalty terms.

Among the methods of this group we particularly studied the isogeometric dis-

continuous Galerkin method in Chapter 3. The main contribution of this thesis to

87
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the context of dG-IgA methods was to provide a way to handle non-matching inter-

face parameterizations. These give rise to difficulties when it comes to evaluating

integrals of products of basis functions from different patches on the interface. We

explained how to reparameterize the interface in order to identify pairs of corre-

sponding points in the parameter domain with respect to function evaluation and

how to choose suitable quadrature knots. Numerical experiments also included

adaptive quadrature and the results suggested that in a two-dimensional setting

both exact quadrature combined with a suitable splitting of the knot spans on the

interface and adaptive quadrature realize optimal convergence rates.

Furthermore, in both approaches, the computational effort to evaluate inte-

grals interior to single patches outweighted the effort of numerical integration

on the interface. Future work may be devoted to the extension of the adaptive

quadrature-based approach to the three-dimensional case. Here, we expect adap-

tive quadrature to computationally outperform exact quadrature combined with

splitting of the two-dimensional knot spans.

The second group of coupling methods leaves the weak problem formulation

unchanged and adapts the test function space instead. Constructing smooth iso-

geometric functions on a multi-patch domain is a challenging task, which often is

accompanied by restrictive assumptions on the parameterization of the underlying

geometry. In Chapter 4 we proposed an approach to constructing approximately

C1-smooth isogeometric functions on general domains, i.e. our approach is inde-

pendent of the geometry parameterization. In exchange, the constructed functions

are not exactly smooth. The proposed approach was based on the choice of a suit-

able bilinear form and some of its eigenvalues and corresponding eigenvectors. This

facilitated bounding the gradient jump of the constructed functions. Additionally,

this magnitude of the jump was controlled by a parameter ε, which we chose in ad-

vance. Numerical experiments suggested that for second order problems, the space

G1,ε
h maintains full approximation power even for constant, i.e., mesh-independent

choices of ε. Our functions were smooth enough to serve as test functions for a

fourth order problem. In order to restore the optimal convergence rates in this

case, ε had to be chosen as a power of the mesh size. The suitable exponent had

to be adapted to the degree of the basis functions.
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In future work we would like to establish a theoretical background for the

experimental results. This includes

• investigating a projector to the space of approximately C1-smooth isogeo-

metric functions to proof optimal convergence rates,

• studying the eigenstructure of the matrix Q to develop a lower bound for

the number of non-trivial basis functions and

• analyzing the influence of ε.

The last point affects the first two points: A smaller value of ε creates smoother

but at the same time less functions. Figure 4.11 seemed to indicate that a linear

growth rate of the number of interface basis functions can be restored if ε is chosen

in O(hp−2). Hence, choosing ε is a trade-off between keeping enough functions

and making them sufficiently smooth. At the same time, this has an impact on

the approximation power, as seen e.g. in Figure 4.10. Developing a result that

establishes a relation between the degree of the basis functions, the choice of ε and

the resulting approximation power will be a prime focus in future work. Last but

not least future work includes generalizing the approach to domains with more

than two patches.

The last part of this thesis differed from the first two parts: Firstly, we consid-

ered splines instead of isogeometric functions and secondly we worked with geo-

metrical instead of parametrical smoothness. Especially in industrial applications

as presented in Chapter 5 approximate geometrical smoothness can be sufficient.

In this last part we presented a spline fitting technique, in which point and nor-

mal data were approximated simultaneously by one tensor-product B-spline patch.

If the normals were sampled from a neighboring patch, this technique facilitates

approximately G1-smooth transitions across the patch interface. The problem was

formulated as a minimization problem using norm-like functions, which made it

non-linear. Standard least-squares fitting was contained in the setting by choosing

a specific yet simple norm-like function. We applied a Gauss-Newton technique to

find a minimizer, which we have shown to exist, of the problem.

In the context of coupling techniques, fitting the normals additionally to fitting

point samples can be seen as a jump penalty term. Consequently, similar to
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choosing penalty parameters in non-linear optimization techniques, weighting the

normal fitting term is a non-trivial task. We showed that the weight should be

chosen in dependence on the mesh size in order to realize optimal convergence

rates.

In experiments, we also computed truncated hierarchical B-splines (THB-

splines) surfaces instead of tensor-product surfaces, which provided again a signif-

icant improvement of the fitted patch.

A further improvement of the fitting results could be achieved by performing an

optimization of the parameters also, using methods such as parameter correction

[31]. This is beyond the scope of this thesis. Last, but not least, it might be possible

to generalize the theoretical observations made in Chapter 5 to hierarchical splines,

based on the recent results of [60] on quasi-interpolation operators for THB-splines.
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Collège de France Seminar, volume XI, pages 13 – 51. Pitman, 1994.

[5] C. Bernardi, Y. Maday, and F. Rapetti. Basics and some applications of the

mortar element method. GAMM-Mitteilungen, 28:97 – 123, 2005.
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